Journal of Mathematics of Kyoto University

On a result of H. Fujimoto

Xiaotian Bai, Qi Han, and Ang Chen

Full-text: Open access

Abstract

Let $P(\omega)$ be a uniqueness polynomial of degree $q$ without multiple zeros whose derivative has mutually distinct $k$ zeros $d_l$ with multiplicities $q_l$ for $l=1, 2, \ldots, k$ respectively, and let $S:=\{a_1, a_2, \cdots, a_q\}$ be the zero set of $P(\omega)$. Under the assumption that $P(d_{l_s})\neq P(d_{l_t})$ $(1\leq l_s < l_t\leq k)$, we give some sufficient conditions for the set $S$ to be a unique range set with some weak value-sharing hypothesis, namely, to satisfy the condition that $\sum_{j=1}^q\nu_{f,m_0)}^{a_j}\equiv\sum_{j=1}^q\nu_{g,m_0)}^{a_j}$ ($m_0\in\mathbb{Z}^+\cup\{\infty\}$) implies $f\equiv g$ for any two nonconstant meromorphic or entire functions $f$ and $g$ on $\mathbb{C}$, which improve a result of H. Fujimoto. Also, we discuss some other related topics.

Article information

Source
J. Math. Kyoto Univ., Volume 49, Number 3 (2009), 631-643.

Dates
First available in Project Euclid: 16 December 2009

Permanent link to this document
https://projecteuclid.org/euclid.kjm/1260975043

Digital Object Identifier
doi:10.1215/kjm/1260975043

Mathematical Reviews number (MathSciNet)
MR2583606

Zentralblatt MATH identifier
1193.30035

Subjects
Primary: 30D35: Distribution of values, Nevanlinna theory 30D20: Entire functions, general theory

Citation

Bai, Xiaotian; Han, Qi; Chen, Ang. On a result of H. Fujimoto. J. Math. Kyoto Univ. 49 (2009), no. 3, 631--643. doi:10.1215/kjm/1260975043. https://projecteuclid.org/euclid.kjm/1260975043


Export citation