Journal of Mathematics of Kyoto University

Some properties of subharmonic functions on complete Riemannian manifolds and their geometric applications

Zonglao Zhang and Zongben Xu

Full-text: Open access

Abstract

This paper investigates the global behavior of subharmonic functions on a complete noncompact simply-connected Riemannian manifold. The authors obtain some Liouville-type theorems, a comparison theorem for the strong parabolicity of a manifold and their applications to geometry.

Article information

Source
J. Math. Kyoto Univ., Volume 44, Number 1 (2004), 173-180.

Dates
First available in Project Euclid: 14 August 2009

Permanent link to this document
https://projecteuclid.org/euclid.kjm/1250283587

Digital Object Identifier
doi:10.1215/kjm/1250283587

Mathematical Reviews number (MathSciNet)
MR2062712

Zentralblatt MATH identifier
1073.53052

Subjects
Primary: 53C21: Methods of Riemannian geometry, including PDE methods; curvature restrictions [See also 58J60]

Citation

Zhang, Zonglao; Xu, Zongben. Some properties of subharmonic functions on complete Riemannian manifolds and their geometric applications. J. Math. Kyoto Univ. 44 (2004), no. 1, 173--180. doi:10.1215/kjm/1250283587. https://projecteuclid.org/euclid.kjm/1250283587


Export citation