Journal of Mathematics of Kyoto University

Homological invariants associated to semi-dualizing bimodules

Tokuji Araya, Ryo Takahashi, and Yuji Yoshino

Full-text: Open access

Abstract

Cohen-Macaulay dimension for modules over a commutative ring has been defined by A. A. Gerko. That is a homological invariant sharing many properties with projective dimension and Gorenstein dimension. The main purpose of this paper is to extend the notion of Cohen-Macaulay dimension for modules over commutative noetherian local rings to that for bounded complexes over non-commutative noetherian rings.

Article information

Source
J. Math. Kyoto Univ., Volume 45, Number 2 (2005), 287-306.

Dates
First available in Project Euclid: 14 August 2009

Permanent link to this document
https://projecteuclid.org/euclid.kjm/1250281991

Digital Object Identifier
doi:10.1215/kjm/1250281991

Mathematical Reviews number (MathSciNet)
MR2161693

Zentralblatt MATH identifier
1096.16001

Subjects
Primary: 16E10: Homological dimension
Secondary: 13D05: Homological dimension 13D25 13H10: Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.) [See also 14M05]

Citation

Araya, Tokuji; Takahashi, Ryo; Yoshino, Yuji. Homological invariants associated to semi-dualizing bimodules. J. Math. Kyoto Univ. 45 (2005), no. 2, 287--306. doi:10.1215/kjm/1250281991. https://projecteuclid.org/euclid.kjm/1250281991


Export citation