Journal of Mathematics of Kyoto University

Another proof of theorems of De Concini and Procesi

Mitsuyasu Hashimoto

Full-text: Open access

Abstract

We give a new proof of some characteristic-free fundamental theorems in invariant theory first proved in C. De Concini and C. Procesi, A characteristic free approach to invariant theory, Adv. Math. 21 (1976), 330–354. We treat the action of the general linear group and the symplectic group. Our approach is geometric, and utilizes the fact that the categorical quotients are principal fiber bundles off codimension two or more.

Article information

Source
J. Math. Kyoto Univ., Volume 45, Number 4 (2005), 701-710.

Dates
First available in Project Euclid: 14 August 2009

Permanent link to this document
https://projecteuclid.org/euclid.kjm/1250281653

Digital Object Identifier
doi:10.1215/kjm/1250281653

Mathematical Reviews number (MathSciNet)
MR2226626

Zentralblatt MATH identifier
1108.13005

Subjects
Primary: 13A50: Actions of groups on commutative rings; invariant theory [See also 14L24]
Secondary: 14L30: Group actions on varieties or schemes (quotients) [See also 13A50, 14L24, 14M17]

Citation

Hashimoto, Mitsuyasu. Another proof of theorems of De Concini and Procesi. J. Math. Kyoto Univ. 45 (2005), no. 4, 701--710. doi:10.1215/kjm/1250281653. https://projecteuclid.org/euclid.kjm/1250281653


Export citation