Journal of Mathematics of Kyoto University

Positive Toeplitz operators on pluriharmonic Bergman spaces

Eun Sun Choi

Full-text: Open access

Abstract

We study Toeplitz operators on the pluriharmonic Bergman spaces $b^{p}$ for $1<p<\infty$. We give characterizations of Toeplitz operators with positive symbols to be bounded, compact and in the Schatten classes. Also, we describe the essential spectra of Toeplitz operators with uniformly continuous symbols.

Article information

Source
J. Math. Kyoto Univ., Volume 47, Number 2 (2007), 247-267.

Dates
First available in Project Euclid: 14 August 2009

Permanent link to this document
https://projecteuclid.org/euclid.kjm/1250281046

Digital Object Identifier
doi:10.1215/kjm/1250281046

Mathematical Reviews number (MathSciNet)
MR2376957

Zentralblatt MATH identifier
1158.32001

Subjects
Primary: 47B35: Toeplitz operators, Hankel operators, Wiener-Hopf operators [See also 45P05, 47G10 for other integral operators; see also 32A25, 32M15]
Secondary: 32Axx: Holomorphic functions of several complex variables

Citation

Choi, Eun Sun. Positive Toeplitz operators on pluriharmonic Bergman spaces. J. Math. Kyoto Univ. 47 (2007), no. 2, 247--267. doi:10.1215/kjm/1250281046. https://projecteuclid.org/euclid.kjm/1250281046


Export citation