Journal of Mathematics of Kyoto University

Fundamental groups of symmetric sextics

Alex Degtyarev

Full-text: Open access

Abstract

We study the moduli spaces and compute the fundamental groups of plane sextics of torus type with at least two type-${\bf E}_6$ singular points. As a simple application, we compute the fundamental groups of $125$ other sextics, most of which are new.

Article information

Source
J. Math. Kyoto Univ., Volume 48, Number 4 (2008), 765-792.

Dates
First available in Project Euclid: 14 August 2009

Permanent link to this document
https://projecteuclid.org/euclid.kjm/1250271318

Digital Object Identifier
doi:10.1215/kjm/1250271318

Mathematical Reviews number (MathSciNet)
MR2513586

Zentralblatt MATH identifier
1172.14020

Subjects
Primary: 14H30: Coverings, fundamental group [See also 14E20, 14F35]
Secondary: 14H45

Citation

Degtyarev, Alex. Fundamental groups of symmetric sextics. J. Math. Kyoto Univ. 48 (2008), no. 4, 765--792. doi:10.1215/kjm/1250271318. https://projecteuclid.org/euclid.kjm/1250271318


Export citation