Journal of Mathematics of Kyoto University

Sur le Cortex d'un groupe de Lie nilpotent

Imed Kédim and Megdiche Hatem

Full-text: Open access

Abstract

Let $G$ be a connected and simply connected, nilpotent Lie group. In this paper, we show that the cortex of $G$ is a semi-algebraic set by means of a geometric characterization. It is also shown that the cortex is the image under a linear projection of a countable union of a semi-algebraic sets lying in the tensor product $T$($\mathfrak{g}$)$\otimes$ $\mathfrak{g}$*.

Article information

Source
J. Math. Kyoto Univ., Volume 49, Number 1 (2009), 161-172.

Dates
First available in Project Euclid: 30 July 2009

Permanent link to this document
https://projecteuclid.org/euclid.kjm/1248983034

Digital Object Identifier
doi:10.1215/kjm/1248983034

Mathematical Reviews number (MathSciNet)
MR2531133

Zentralblatt MATH identifier
1170.22004

Subjects
Primary: 22E27: Representations of nilpotent and solvable Lie groups (special orbital integrals, non-type I representations, etc.)
Secondary: 22G25

Citation

Kédim, Imed; Hatem, Megdiche. Sur le Cortex d'un groupe de Lie nilpotent. J. Math. Kyoto Univ. 49 (2009), no. 1, 161--172. doi:10.1215/kjm/1248983034. https://projecteuclid.org/euclid.kjm/1248983034


Export citation