Journal of Symbolic Logic

Topological properties of sets definable in weakly o-minimal structures

Roman Wencel

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


The paper is aimed at studying the topological dimension for sets definable in weakly o-minimal structures in order to prepare background for further investigation of groups, group actions and fields definable in the weakly o-minimal context. We prove that the topological dimension of a set definable in a weakly o-minimal structure is invariant under definable injective maps, strengthening an analogous result from [2] for sets and functions definable in models of weakly o-minimal theories. We pay special attention to large subsets of Cartesian products of definable sets, showing that if X,Y and S are non-empty definable sets and S is a large subset of X× Y, then for a large set of tuples 〈\overline{a}₁,…,\overline{a}2k〉 ∈ X{2k}, where k=dim(Y), the union of fibers S\overline{a}₁∪…∪ S\overline{a}2k is large in Y. Finally, given a weakly o-minimal structure ℳ, we find various conditions equivalent to the fact that the topological dimension in ℳ enjoys the addition property.

Article information

J. Symbolic Logic, Volume 75, Issue 3 (2010), 841-867.

First available in Project Euclid: 9 July 2010

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 03C64: Model theory of ordered structures; o-minimality


Wencel, Roman. Topological properties of sets definable in weakly o-minimal structures. J. Symbolic Logic 75 (2010), no. 3, 841--867. doi:10.2178/jsl/1278682203.

Export citation