Journal of Symbolic Logic

Hierarchies of forcing axioms II

Itay Neeman

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


A $\Sigma^2_1$ truth for $\lambda$ is a pair $\langle Q,\psi\rangle$ so that $Q\subseteq H_\lambda, \psi$ is a first order formula with one free variable, and there exists $B\subseteq H_{\lambda+}$ such that $(H_{\lambda+} ; \in B) \models \psi[Q]$. A cardinal $\lambda$ is $\Sigma^2_1$ indescribable just in case that for every $\Sigma^2_1$ truth $\langle Q,\psi\rangle$ for $\lambda$, there exists $\overline{\lambda}$ < $\lambda$ so that $\overline{\lambda}$ is a cardinal and $\langle Q \cap H_{\overline{\lambda}}, \psi \rangle$ is a $\Sigma^2_1$ truth for $\overline{\lambda}$. More generally, an interval of cardinals $[\kappa, \lambda]$ with $\kappa \leq \lambda$ is $\Sigma^2_1$ indescribable if for every $\Sigma^2_1$ truth $\langle Q,\psi\rangle$ for $\lambda$, there exists $\overline{\kappa} \leq \overline{\lambda} < \kappa, \overline{Q} \subseteq H_{\overline{\lambda}}$, and $\pi: H_{\overline{\lambda}} \rightarrow H_{\lambda}$ so that $\overline{\lambda}$ is a cardinal, $\langle \overline{Q},\psi\rangle$ is a $\Sigma^2_1$ truth for $\overline{\lambda}$, and $\pi$ is elementary from $(H_{\overline{\lambda}} ; \in, \overline{\kappa}, \overline{Q})$ into $(H_{\lambda}; \in, \kappa, Q)$ with $\pi \upharpoonright \overline{\kappa} =$ id. We prove that the restriction of the proper forcing axiom to $\mathfrak{c}-linked posets requires a $\Sigma^2_1$ indescribable cardinal in L, and that the restriction of the proper forcing axiom to $\mathfrak{c}^+$-linked posets, in a proper forcing extension of a fine structural model, requires a $\Sigma^2_1$ indescribable 1-gap $[\kappa, \kappa^+]$. These results show that the respective forward directions obtained in Hierarchies of Forcing Axioms I by Neeman and Schimmerling are optimal.

Article information

J. Symbolic Logic, Volume 73, Issue 2 (2008), 522-542.

First available in Project Euclid: 16 April 2008

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


Neeman, Itay. Hierarchies of forcing axioms II. J. Symbolic Logic 73 (2008), no. 2, 522--542. doi:10.2178/jsl/1208359058.

Export citation