Journal of Symbolic Logic

The Canary Tree Revisited

Tapani Hyttinen and Mika Rautila

Full-text is available via JSTOR, for JSTOR subscribers. Go to this article in JSTOR.

Abstract

We generalize the result of Mekler and Shelah [3] that the existence of a canary tree is independent of ZFC + GCH to uncountable regular cardinals. We also correct an error from the original proof.

Article information

Source
J. Symbolic Logic, Volume 66, Issue 4 (2001), 1677-1694.

Dates
First available in Project Euclid: 6 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.jsl/1183746618

Mathematical Reviews number (MathSciNet)
MR1877015

Zentralblatt MATH identifier
0993.03061

JSTOR
links.jstor.org

Citation

Hyttinen, Tapani; Rautila, Mika. The Canary Tree Revisited. J. Symbolic Logic 66 (2001), no. 4, 1677--1694. https://projecteuclid.org/euclid.jsl/1183746618


Export citation