Journal of Symbolic Logic

Was Sierpinski Right? IV

Saharon Shelah

Full-text is available via JSTOR, for JSTOR subscribers. Go to this article in JSTOR.

Abstract

We prove for any $\mu = \mu^{<\mu} < \theta < \lambda, \lambda$ large enough (just strongly inaccessible Mahlo) the consistency of $2^\mu$ = $ \lambda \rightarrow [\theta]^2_3$ and even $2^\mu$ = $\lambda \rightarrow [\theta]^2_{\sigma,2}$ for $\sigma < \mu$. The new point is that possibly $\theta > \mu^+$.

Article information

Source
J. Symbolic Logic, Volume 65, Issue 3 (2000), 1031-1054.

Dates
First available in Project Euclid: 6 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.jsl/1183746168

Mathematical Reviews number (MathSciNet)
MR1791363

Zentralblatt MATH identifier
0970.03039

JSTOR
links.jstor.org

Citation

Shelah, Saharon. Was Sierpinski Right? IV. J. Symbolic Logic 65 (2000), no. 3, 1031--1054. https://projecteuclid.org/euclid.jsl/1183746168


Export citation