Journal of Symbolic Logic

The Liar Paradox and Fuzzy Logic

Petr Hajek, Jeff Paris, and John Shepherdson

Full-text is available via JSTOR, for JSTOR subscribers. Go to this article in JSTOR.

Abstract

Can one extend crisp Peano arithmetic PA by a possibly many-valued predicate Tr(x) saying "x is true" and satisfying the "dequotation schema" $\varphi \equiv \text{Tr}(\bar{\varphi})$ for all sentences $\varphi$? This problem is investigated in the frame of Lukasiewicz infinitely valued logic.

Article information

Source
J. Symbolic Logic, Volume 65, Issue 1 (2000), 339-346.

Dates
First available in Project Euclid: 6 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.jsl/1183746025

Mathematical Reviews number (MathSciNet)
MR1782124

Zentralblatt MATH identifier
0945.03031

JSTOR
links.jstor.org

Citation

Hajek, Petr; Paris, Jeff; Shepherdson, John. The Liar Paradox and Fuzzy Logic. J. Symbolic Logic 65 (2000), no. 1, 339--346. https://projecteuclid.org/euclid.jsl/1183746025


Export citation