Journal of Symbolic Logic

Rectangular Games

Yde Venema

Full-text is available via JSTOR, for JSTOR subscribers. Go to this article in JSTOR.

Abstract

We prove that every rectangularly dense diagonal-free cylindric algebra is representable. As a corollary, we give finite, sound and complete axiomatizations for the finite-variable fragments of first order logic without equality and for multi-dimensional modal S5-logic.

Article information

Source
J. Symbolic Logic, Volume 63, Issue 4 (1998), 1549-1564.

Dates
First available in Project Euclid: 6 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.jsl/1183745647

Mathematical Reviews number (MathSciNet)
MR1665775

Zentralblatt MATH identifier
0926.03080

JSTOR
links.jstor.org

Citation

Venema, Yde. Rectangular Games. J. Symbolic Logic 63 (1998), no. 4, 1549--1564. https://projecteuclid.org/euclid.jsl/1183745647


Export citation