Journal of Symbolic Logic

Completeness of the Propositions-as-Types Interpretation of Intuitionistic Logic into Illative Combinatory Logic

Wil Dekkers, Martin Bunder, and Henk Barendregt

Full-text is available via JSTOR, for JSTOR subscribers. Go to this article in JSTOR.

Abstract

Illative combinatory logic consists of the theory of combinators or lambda calculus extended by extra constants (and corresponding axioms and rules) intended to capture inference. In a preceding paper, [2], we considered 4 systems of illative combinatory logic that are sound for first order intuitionistic propositional and predicate logic. The interpretation from ordinary logic into the illative systems can be done in two ways: following the propositions-as-types paradigm, in which derivations become combinators, or in a more direct way, in which derivations are not translated. Both translations are closely related in a canonical way. In the cited paper we proved completeness of the two direct translations. In the present paper we prove that also the two indirect translations are complete. These proofs are direct whereas in another version, [3], we proved completeness by showing that the two corresponding illative systems are conservative over the two systems for the direct translations. Moreover we shall prove that one of the systems is also complete for predicate calculus with higher type functions.

Article information

Source
J. Symbolic Logic, Volume 63, Issue 3 (1998), 869-890.

Dates
First available in Project Euclid: 6 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.jsl/1183745571

Mathematical Reviews number (MathSciNet)
MR1649066

Zentralblatt MATH identifier
0947.03018

JSTOR
links.jstor.org

Citation

Dekkers, Wil; Bunder, Martin; Barendregt, Henk. Completeness of the Propositions-as-Types Interpretation of Intuitionistic Logic into Illative Combinatory Logic. J. Symbolic Logic 63 (1998), no. 3, 869--890. https://projecteuclid.org/euclid.jsl/1183745571


Export citation