Journal of Symbolic Logic

On Minimal Structures

Oleg V. Belegradek

Full-text is available via JSTOR, for JSTOR subscribers. Go to this article in JSTOR.

Abstract

For any countable transitive complete theory T with infinite models and the finite model property, we construct a minimal structure M such that the theory of M is small if and only if T is small, and is $\lambda$-stable if and only if T is $\lambda$-stable. This gives a series of new examples of minimal structures.

Article information

Source
J. Symbolic Logic, Volume 63, Issue 2 (1998), 421-426.

Dates
First available in Project Euclid: 6 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.jsl/1183745510

Mathematical Reviews number (MathSciNet)
MR1625880

Zentralblatt MATH identifier
0908.03039

JSTOR
links.jstor.org

Citation

Belegradek, Oleg V. On Minimal Structures. J. Symbolic Logic 63 (1998), no. 2, 421--426. https://projecteuclid.org/euclid.jsl/1183745510


Export citation