Journal of Symbolic Logic

Decidability of Scott's Model as an Ordered $\mathbb{Q}$-Vectorspace

Miklos Erdelyi-Szabo

Full-text is available via JSTOR, for JSTOR subscribers. Go to this article in JSTOR.

Abstract

Let $L = \langle, +, h_q, 1\rangle_{q \in \mathbb{Q}}$ where $\mathbb{Q}$ is the set of rational numbers and $h_q$ is a one-place function symbol corresponding to multiplication by $q$. Then the $L$-theory of Scott's model for intuitionistic analysis is decidable.

Article information

Source
J. Symbolic Logic, Volume 62, Issue 3 (1997), 917-924.

Dates
First available in Project Euclid: 6 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.jsl/1183745304

Mathematical Reviews number (MathSciNet)
MR1472130

Zentralblatt MATH identifier
0892.03003

JSTOR
links.jstor.org

Citation

Erdelyi-Szabo, Miklos. Decidability of Scott's Model as an Ordered $\mathbb{Q}$-Vectorspace. J. Symbolic Logic 62 (1997), no. 3, 917--924. https://projecteuclid.org/euclid.jsl/1183745304


Export citation