Journal of Symbolic Logic

Bimodal Logics for Extensions of Arithmetical Theories

Lev D. Beklemishev

Full-text is available via JSTOR, for JSTOR subscribers. Go to this article in JSTOR.

Abstract

We characterize the bimodal provability logics for certain natural (classes of) pairs of recursively enumerable theories, mostly related to fragments of arithmetic. For example, we shall give axiomatizations, decision procedures, and introduce natural Kripke semantics for the provability logics of $(I\Delta_0 + EXP, PRA); (PRA, I\Sigma_1); (I\Sigma_m, I\Sigma_n)$ for $1 \leq m < n; (PA, ACA_0); (ZFC, ZFC + CH); (ZFC, ZFC + \neg CH)$ etc. For the case of finitely axiomatized extensions of theories these results are extended to modal logics with propositional constants.

Article information

Source
J. Symbolic Logic, Volume 61, Issue 1 (1996), 91-124.

Dates
First available in Project Euclid: 6 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.jsl/1183744929

Mathematical Reviews number (MathSciNet)
MR1380679

Zentralblatt MATH identifier
0858.03024

JSTOR
links.jstor.org

Citation

Beklemishev, Lev D. Bimodal Logics for Extensions of Arithmetical Theories. J. Symbolic Logic 61 (1996), no. 1, 91--124. https://projecteuclid.org/euclid.jsl/1183744929


Export citation