Journal of Symbolic Logic

An Induction Principle and Pigeonhole Principles for K-Finite Sets

Andreas Blass

Full-text is available via JSTOR, for JSTOR subscribers. Go to this article in JSTOR.

Abstract

We establish a course-of-values induction principle for K-finite sets in intuitionistic type theory. Using this principle, we prove a pigeonhole principle conjectured by Benabou and Loiseau. We also comment on some variants of this pigeonhole principle.

Article information

Source
J. Symbolic Logic, Volume 60, Issue 4 (1995), 1186-1193.

Dates
First available in Project Euclid: 6 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.jsl/1183744870

Mathematical Reviews number (MathSciNet)
MR1367203

Zentralblatt MATH identifier
0848.03033

JSTOR
links.jstor.org

Citation

Blass, Andreas. An Induction Principle and Pigeonhole Principles for K-Finite Sets. J. Symbolic Logic 60 (1995), no. 4, 1186--1193. https://projecteuclid.org/euclid.jsl/1183744870


Export citation