Journal of Symbolic Logic

Sous-Groupes Periodiques D'Un Groupe Stable

Bruno Poizat and Frank Wagner

Full-text is available via JSTOR, for JSTOR subscribers. Go to this article in JSTOR.

Abstract

We develop a Sylow theory for stable groups satisfying certain additional conditions (2-finiteness, solvability or smallness) and show that their maximal $p$-subgroups are locally finite and conjugate. Furthermore, we generalize a theorem of Baer-Suzuki on subgroups generated by a conjugacy class of $p$-elements.

Article information

Source
J. Symbolic Logic, Volume 58, Issue 2 (1993), 385-400.

Dates
First available in Project Euclid: 6 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.jsl/1183744239

Mathematical Reviews number (MathSciNet)
MR1233916

Zentralblatt MATH identifier
0787.03027

JSTOR
links.jstor.org

Citation

Poizat, Bruno; Wagner, Frank. Sous-Groupes Periodiques D'Un Groupe Stable. J. Symbolic Logic 58 (1993), no. 2, 385--400. https://projecteuclid.org/euclid.jsl/1183744239


Export citation