Journal of Symbolic Logic

Countable Structures of Given Age

H. D. MacPherson, M. Pouzet, and R. E. Woodrow

Full-text is available via JSTOR, for JSTOR subscribers. Go to this article in JSTOR.

Abstract

Let $L$ be a finite relational language. The age of a structure $\mathfrak{M}$ over $L$ is the set of isomorphism types of finite substructures of $\mathfrak{M}$. We classify those ages $\mathfrak{U}$ for which there are less than $2^\omega$ countably infinite pairwise nonisomorphic $L$-structures of age $\mathfrak{U}$.

Article information

Source
J. Symbolic Logic, Volume 57, Issue 3 (1992), 992-1010.

Dates
First available in Project Euclid: 6 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.jsl/1183744054

Mathematical Reviews number (MathSciNet)
MR1187462

Zentralblatt MATH identifier
0764.03011

JSTOR
links.jstor.org

Citation

MacPherson, H. D.; Pouzet, M.; Woodrow, R. E. Countable Structures of Given Age. J. Symbolic Logic 57 (1992), no. 3, 992--1010. https://projecteuclid.org/euclid.jsl/1183744054


Export citation