Journal of Symbolic Logic

Plongement Dense d'un Corps Ordonne dans sa Cloture Reelle

Francoise Delon

Full-text is available via JSTOR, for JSTOR subscribers. Go to this article in JSTOR.

Abstract

We study the structures $(K \subset K^\mathrm{r})$, where $K$ is an ordered field and $K^\mathrm{r}$ its real closure, in the language of ordered fields with an additional unary predicate for the subfield $K$. Two such structures $(K \subset K^\mathrm{r})$ and $(L \subset L^\mathrm{r})$ are not necessarily elementary equivalent when $K$ and $L$ are. But with some saturation assumption on $K$ and $L$, then the two structures become equivalent, and we give a description of the complete theory.

Article information

Source
J. Symbolic Logic, Volume 56, Issue 3 (1991), 974-980.

Dates
First available in Project Euclid: 6 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.jsl/1183743744

Digital Object Identifier
doi:10.2178/jsl/1183743744

Mathematical Reviews number (MathSciNet)
MR1129160

Zentralblatt MATH identifier
0746.03027

JSTOR
links.jstor.org

Citation

Delon, Francoise. Plongement Dense d'un Corps Ordonne dans sa Cloture Reelle. J. Symbolic Logic 56 (1991), no. 3, 974--980. doi:10.2178/jsl/1183743744. https://projecteuclid.org/euclid.jsl/1183743744


Export citation