Journal of Symbolic Logic

The Cofinality of Cardinal Invariants Related to Measure and Category

Tomek Bartoszynski, Jaime I. Ihoda, and Saharon Shelah

Full-text is available via JSTOR, for JSTOR subscribers. Go to this article in JSTOR.

Abstract

We prove that the following are consistent with ZFC. 1. $2^\omega = \aleph_{\omega_1} + K_C = \aleph_{\omega_1} + K_B = K_U = \omega_2$ (for measure and category simultaneously). 2. $2^\omega = \aleph_{\omega_1} = K_C(\mathscr{L}) + K_C(\mathscr{M}) = \omega_2$. This concludes the discussion about the cofinality of $K_C$.

Article information

Source
J. Symbolic Logic, Volume 54, Issue 3 (1989), 719-726.

Dates
First available in Project Euclid: 6 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.jsl/1183743011

Mathematical Reviews number (MathSciNet)
MR1011163

Zentralblatt MATH identifier
0686.03022

JSTOR
links.jstor.org

Citation

Bartoszynski, Tomek; Ihoda, Jaime I.; Shelah, Saharon. The Cofinality of Cardinal Invariants Related to Measure and Category. J. Symbolic Logic 54 (1989), no. 3, 719--726. https://projecteuclid.org/euclid.jsl/1183743011


Export citation