Journal of Symbolic Logic

Classification and Interpretation

Andreas Baudisch

Full-text is available via JSTOR, for JSTOR subscribers. Go to this article in JSTOR.

Abstract

Let $S$ and $T$ be countable complete theories. We assume that $T$ is superstable without the dimensional order property, and $S$ is interpretable in $T$ in such a way that every model of $S$ is coded in a model of $T$. We show that $S$ does not have the dimensional order property, and we discuss the question of whether $\operatorname{Depth}(S) \leq \operatorname{Depth}(T)$. For Mekler's uniform interpretation of arbitrary theories $S$ of finite similarity type into suitable theories $T_s$ of groups we show that $\operatorname{Depth}(S) \leq \operatorname{Depth}(T_S) \leq 1 + \operatorname{Depth}(S)$.

Article information

Source
J. Symbolic Logic, Volume 54, Issue 1 (1989), 138-159.

Dates
First available in Project Euclid: 6 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.jsl/1183742857

Mathematical Reviews number (MathSciNet)
MR987328

Zentralblatt MATH identifier
0672.03018

JSTOR
links.jstor.org

Citation

Baudisch, Andreas. Classification and Interpretation. J. Symbolic Logic 54 (1989), no. 1, 138--159. https://projecteuclid.org/euclid.jsl/1183742857


Export citation