Journal of Symbolic Logic

Nonsplitting Subset of $\mathscr{P}_\kappa(\kappa^+)$

Moti Gitik

Full-text is available via JSTOR, for JSTOR subscribers. Go to this article in JSTOR.

Abstract

Assuming the existence of a supercompact cardinal, we construct a model of ZFC + (There exists a nonsplitting stationary subset of $\mathscr{P}_|kappa(\kappa^+)$). Answering a question of Uri Abraham [A], [A-S], we prove that adding a real to the world always makes $\mathscr{P}_{\aleph_1}(\aleph_2) - V$ stationary

Article information

Source
J. Symbolic Logic, Volume 50, Issue 4 (1985), 881-894.

Dates
First available in Project Euclid: 6 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.jsl/1183741965

Mathematical Reviews number (MathSciNet)
MR820120

Zentralblatt MATH identifier
0601.03021

JSTOR
links.jstor.org

Citation

Gitik, Moti. Nonsplitting Subset of $\mathscr{P}_\kappa(\kappa^+)$. J. Symbolic Logic 50 (1985), no. 4, 881--894. https://projecteuclid.org/euclid.jsl/1183741965


Export citation