Journal of Symbolic Logic

A Minimal Degree Which Collapses $\omega_1$

Tim Carlson, Kenneth Kunen, and Arnold W. Miller

Full-text is available via JSTOR, for JSTOR subscribers. Go to this article in JSTOR.

Abstract

We consider a well-known partial order of Prikry for producing a collapsing function of minimal degree. Assuming $MA + \neq CH$, every new real constructs the collapsing map.

Article information

Source
J. Symbolic Logic, Volume 49, Issue 1 (1984), 298-300.

Dates
First available in Project Euclid: 6 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.jsl/1183741495

Mathematical Reviews number (MathSciNet)
MR736623

Zentralblatt MATH identifier
0588.03036

JSTOR
links.jstor.org

Citation

Carlson, Tim; Kunen, Kenneth; Miller, Arnold W. A Minimal Degree Which Collapses $\omega_1$. J. Symbolic Logic 49 (1984), no. 1, 298--300. https://projecteuclid.org/euclid.jsl/1183741495


Export citation