Journal of Symbolic Logic

$QE$ Rings in Characteristic $p^n$

Chantal Berline and Gregory Cherlin

Full-text is available via JSTOR, for JSTOR subscribers. Go to this article in JSTOR.

Abstract

We show that all $QE$ rings of prime power characteristic are constructed in a straightforward way out of three components: a filtered Boolean power of a finite field, a nilpotent Jacobson radical, and the ring $\mathbf{Z}_{p^n}$ or the Witt ring $W_2(\mathbf{F}_4)$ (which is the characteristic four analogue of the Galois field with four elements).

Article information

Source
J. Symbolic Logic, Volume 48, Issue 1 (1983), 140-162.

Dates
First available in Project Euclid: 6 July 2007

Permanent link to this document
https://projecteuclid.org/euclid.jsl/1183741198

Mathematical Reviews number (MathSciNet)
MR693256

Zentralblatt MATH identifier
0524.03016

JSTOR
links.jstor.org

Citation

Berline, Chantal; Cherlin, Gregory. $QE$ Rings in Characteristic $p^n$. J. Symbolic Logic 48 (1983), no. 1, 140--162. https://projecteuclid.org/euclid.jsl/1183741198


Export citation