Journal of Symbolic Logic

Combinatorial principles weaker than Ramsey's Theorem for pairs

Denis R. Hirschfeldt and Richard A. Shore

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We investigate the complexity of various combinatorial theorems about linear and partial orders, from the points of view of computability theory and reverse mathematics. We focus in particular on the principles ADS (Ascending or Descending Sequence), which states that every infinite linear order has either an infinite descending sequence or an infinite ascending sequence, and CAC (Chain-AntiChain), which states that every infinite partial order has either an infinite chain or an infinite antichain. It is well-known that Ramsey's Theorem for pairs (RT₂²) splits into a stable version (SRT₂²) and a cohesive principle (COH). We show that the same is true of ADS and CAC, and that in their cases the stable versions are strictly weaker than the full ones (which is not known to be the case for RT₂² and SRT₂²). We also analyze the relationships between these principles and other systems and principles previously studied by reverse mathematics, such as WKL₀, DNR, and BΣ₂. We show, for instance, that WKL₀ is incomparable with all of the systems we study. We also prove computability-theoretic and conservation results for them. Among these results are a strengthening of the fact, proved by Cholak, Jockusch, and Slaman, that COH is Π₁¹-conservative over the base system RCA₀. We also prove that CAC does not imply DNR which, combined with a recent result of Hirschfeldt, Jockusch, Kjos-Hanssen, Lempp, and Slaman, shows that CAC does not imply SRT₂² (and so does not imply RT₂²). This answers a question of Cholak, Jockusch, and Slaman. Our proofs suggest that the essential distinction between ADS and CAC on the one hand and RT₂² on the other is that the colorings needed for our analysis are in some way transitive. We formalize this intuition as the notions of transitive and semitransitive colorings and show that the existence of homogeneous sets for such colorings is equivalent to ADS and CAC, respectively. We finish with several open questions.

Article information

J. Symbolic Logic, Volume 72, Issue 1 (2007), 171-206.

First available in Project Euclid: 23 March 2007

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


Hirschfeldt, Denis R.; Shore, Richard A. Combinatorial principles weaker than Ramsey's Theorem for pairs. J. Symbolic Logic 72 (2007), no. 1, 171--206. doi:10.2178/jsl/1174668391.

Export citation