Journal of Symbolic Logic

Une fonction de Kolchin pour les corps imparfaits de degré d'imperfection fini

Françoise Delon

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Non-perfect separably closed fields are stable, and not superstable. As a result, not all types can be ranked. We develop here a new tool, a “semi-rank”, which takes values in the non-negative reals, and gives a sufficient condition for forking of types. This semi-rank is built up from a transcendence function, analogous to the one considered by Kolchin in the context of differentially closed fields. It yields some orthogonality and stratification results.

Résumé

Un corps séparablement clos non algébriquement clos est stable sans être superstable. Cela signifie que seuls certains de ses types sont rangés. Nous développons un autre outil, un « semi-rang » à valeurs réelles, qui donne un critère de déviation des types. Ce semi-rang est construit à partir d'un analogue de la fonction de Kolchin associée à un type au-dessus d'un corps différentiel. Il produit des résultats de stratification des modèles et des résultats d'orthogonalité.

Article information

Source
J. Symbolic Logic, Volume 70, Issue 2 (2005), 664-680.

Dates
First available in Project Euclid: 1 July 2005

Permanent link to this document
https://projecteuclid.org/euclid.jsl/1120224735

Digital Object Identifier
doi:10.2178/jsl/1120224735

Mathematical Reviews number (MathSciNet)
MR2140053

Zentralblatt MATH identifier
1119.03030

Citation

Delon, Françoise. Une fonction de Kolchin pour les corps imparfaits de degré d'imperfection fini. J. Symbolic Logic 70 (2005), no. 2, 664--680. doi:10.2178/jsl/1120224735. https://projecteuclid.org/euclid.jsl/1120224735


Export citation

References

  • John Baldwin Fundamentals of Stability Theory, Springer-Verlag, Berlin,1988.
  • Franck Benoist Rangs et types génériques dans les corps différentiellement clos, Journal of Symbolic Logic, vol. 67 (2002), pp. 1178--1188.
  • Thomas Blossier Ensembles minimaux localement modulaires, Ph.D. thesis, Université Paris7-Denis Diderot,2001.
  • Elisabeth Bouscaren and Françoise Delon Groups definable in separably closed fields, Transactions of the American Mathematical Society, vol. 354 (2001), pp. 945--966.
  • Zoé Chatzidakis, Gregory Cherlin, Saharon Shelah, Gabriel Srour, and Carol Wood Orthogonality of types in separably closed fields, Classification Theory, Lecture Notes in Mathematics, vol. 1292, Springer-Verlag, Berlin,1987.
  • Zoé Chatzidakis and Carol Wood Minimal types in separably closed fields, Journal of Symbolic Logic, vol. 65 (2000), pp. 1443--1450.
  • Françoise Delon Idéaux et types sur les corps séparablement clos, Supplément au Bulletin de la Société Mathématique de France, Mémoire 33, vol. 116 (1988).
  • Ellis Robert Kolchin Differential Algebra and Algebraic Groups, Academic Press, New York,1973.
  • Serge Lang Algebra, Addison-Wesley Publishing Company, Amsterdam,1978.
  • Daniel Lascar Stabilité en théorie des modèles, Cabay, Louvain-la-neuve,1986, ou en version anglaise, \em Stability in model theory, Longman Scientific & Technical, Harlow 1987.
  • Wai Yan Pong Ordinal dimensions and differential completeness, Ph.D. thesis, University of Illinois, Chicago,2000.
  • Saharon Shelah Classification Theory, revised ed., North-Holland, New York,1990.