Journal of Symbolic Logic

A definability result for compact complex spaces

Dale Radin

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

A compact complex space X is viewed as a 1-st order structure by taking predicates for analytic subsets of X, X \times X, … as basic relations. Let f: X→ Y be a proper surjective holomorphic map between complex spaces and set Xy:=f-1(y). We show that the set Ak,d:={y∈ Y: the number of d-dimensional components of Xy is <k} is analytically constructible, i.e., is a definable set when X and Y are compact complex spaces and f: X→ Y is a holomorphic map. The analogous result in the context of algebraic geometry gives rise to the definability of Morley degree.

Article information

Source
J. Symbolic Logic, Volume 69, Issue 1 (2004), 241-254.

Dates
First available in Project Euclid: 2 April 2004

Permanent link to this document
https://projecteuclid.org/euclid.jsl/1080938839

Digital Object Identifier
doi:10.2178/jsl/1080938839

Mathematical Reviews number (MathSciNet)
MR2039359

Zentralblatt MATH identifier
1068.03027

Citation

Radin, Dale. A definability result for compact complex spaces. J. Symbolic Logic 69 (2004), no. 1, 241--254. doi:10.2178/jsl/1080938839. https://projecteuclid.org/euclid.jsl/1080938839


Export citation

References

  • J. M. Aroca, H. Hironaka, and J. L. Vicente Desingularization theorems, Memorias de Matematica del Instituto ``Jorge Juan'', no. 30, Madrid,1977.
  • H. Cartan Détermination des points exceptionelles d'un système de $p$ fonctions analytiques de $n$ variables complexes, Bulletin des Sciences Mathématiques, II, Ser. 57,(1933), pp. 334--344.
  • G. Fischer Complex analytic geometry, Lecture Notes in Mathematics, vol. 538, Springer,1976.
  • J. Frisch Points de platitude d'un morphisme d'espaces analytiques complexes, Inventiones Mathematicae, vol. 4 (1967), pp. 118--138.
  • H. Grauert, Th. Peternell, and R. Remmert (editors) Several complex variables VII, Encyclopaedia of Mathematical Sciences, vol. 74, Springer-Verlag,1994.
  • H. Grauert and R. Remmert Coherent analytic sheaves, Grundlehren der mathematischen Wissenschaften, vol. 265, Springer-Verlag,1984.
  • E. Hrushovski Strongly minimal expansions of algebraically closed fields, Israel Journal of Mathematics, vol. 79 (1992), pp. 129--151.
  • S. Łojasiewicz Introduction to complex analytic geometry, Birkhäuser-Verlag,1991.
  • R. Moosa Contributions to the model theory of fields and compact complex spaces, Ph.D. thesis, University of Illinois at Urbana-Champaign,2001.
  • A. Pillay and T. Scanlon Compact complex manifolds with the DOP and other properties, Journal of Symbolic Logic, vol. 67 (2002), pp. 737--743.
  • R. Remmert Holomorphe und meromorphe Abbildungen komplexer Räume, Mathematische Annalen, vol. 133 (1957), pp. 328--370.
  • L. Van den Dries Model theory of fields: decidability, and bounds for polynomial ideals, Ph.D. thesis, Universiteit Utrecht,1978.
  • B. Zilber Model theory and algebraic geometry, Proceedings of the 10th Easter Conference on Model Theory (Berlin),1993.