Journal of Symbolic Logic

Distinguishing types of gaps in 𝒫(ω)/fin

Teruyuki Yorioka

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Supplementing the well known results of Kunen we show that Martin’s Axiom is not sufficient to decide the existence of (ω1,𝔠)-gaps when (𝔠,𝔠)-gaps exist, that is, it is consistent with ZFC that Martin’s Axiom holds and there are (𝔠,𝔠)-gaps but no (ω1,𝔠)-gaps.

Article information

Source
J. Symbolic Logic, Volume 68, Issue 4 (2003), 1261-1276.

Dates
First available in Project Euclid: 31 October 2003

Permanent link to this document
https://projecteuclid.org/euclid.jsl/1067620186

Digital Object Identifier
doi:10.2178/jsl/1067620186

Mathematical Reviews number (MathSciNet)
MR2017354

Zentralblatt MATH identifier
1056.03025

Citation

Yorioka, Teruyuki. Distinguishing types of gaps in 𝒫(ω)/fin. J. Symbolic Logic 68 (2003), no. 4, 1261--1276. doi:10.2178/jsl/1067620186. https://projecteuclid.org/euclid.jsl/1067620186


Export citation

References

  • T. Bartoszyński and H. Judah Set theory: On the structure of the real line, A. K. Peters, Wellesley, Massachusetts,1995.
  • J. Baumgartner Iterated forcing, Surveys in set theory (A.R.D. Mathias, editor), Cambridge University Press, Cambridge,1983, pp. 1--59.
  • A. Dow, P. Simon, and J. E. Vaughan Strong homology and the proper forcing axiom, Proceedings of the American Mathematical Society, vol. 106 (1989), pp. 821--828.
  • I. Farah preprint,2002.
  • S. Grigorieff Combinatorics on ideals and forcing, Annals of Mathematical Logic, vol. 3 (1971), pp. 363--394.
  • F. Hausdorff Die Graduierung nach dem Endverlauf, Abhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften, Mathematisch-Physische Klasse, vol. 31,1909, pp. 296--334.
  • T. Jech Multiple forcing, Cambridge Tracts in Mathematics, vol. 88, Cambridge University Press,1986.
  • H. Judah, A. Miller, and S. Shelah Sacks forcing, Laver forcing, and Martin's axiom, Archive for Mathematical Logic, vol. 31 (1992), pp. 145--162.
  • K. Kunen $(\kappa,\lambda^*)$-gaps under MA, handwritten note,1976.
  • K. Kunen Set theory: An Introduction to Independence Proofs, Studies in Logic, vol. 102, North-Holland,1980.
  • R. Laver Linear orders in $(\omega)^\omega $ under eventual dominance, Logic colloquium '78, North-Holland,1979, pp. 299--302.
  • F. Rothberger Sur les familles indénombrables de suites de nombres naturels et les problèmes concernant la propriété $C$, Mathematical Proceedings of Cambridge Philosophical Society, vol. 37 (1941), pp. 109--126.
  • M. Scheepers Gaps in $\omega^\omega$, Set theory of the reals, Israel Mathematical Conference Proceedings, vol. 6,1993, pp. 439--561.
  • S. Shelah Proper forcing, Lecture Notes in Mathematics, vol. 940, Springer,1982.
  • S. Todorčević Directed sets and cofinal types, Transactions of the American Mathematical Society, vol. 290 (1985), no. 2, pp. 711--723.
  • S. Todorcevic The first derived limit and compactly $F_\sigma$ sets, Journal of the Mathematical Society of Japan, vol. 50 (1998), no. 4, pp. 831--836.
  • S. Todorchevich and I. Farah Some applications of the method of forcing, Mathematical Institute, Belgrade and Yenisei, Moscow,1995.
  • B. Veličković $\rm OCA$ and automorphisms of $\cP(\omega)/\rm fin$, Topology and its Applications, vol. 49 (1993), no. 1, pp. 1--13.