Journal of Symbolic Logic

A computably categorical structure whose expansion by a constant has infinite computable dimension

Denis R. Hirschfeldt, Bakhadyr Khoussainov, and Richard A. Shore

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Cholak, Goncharov, Khoussainov, and Shore showed that for each k>0 there is a computably categorical structure whose expansion by a constant has computable dimension k. We show that the same is true with k replaced by ω. Our proof uses a version of Goncharov’s method of left and right operations.

Article information

Source
J. Symbolic Logic, Volume 68, Issue 4 (2003), 1199-1241.

Dates
First available in Project Euclid: 31 October 2003

Permanent link to this document
https://projecteuclid.org/euclid.jsl/1067620182

Digital Object Identifier
doi:10.2178/jsl/1067620182

Mathematical Reviews number (MathSciNet)
MR2017350

Zentralblatt MATH identifier
1055.03026

Citation

Hirschfeldt, Denis R.; Khoussainov, Bakhadyr; Shore, Richard A. A computably categorical structure whose expansion by a constant has infinite computable dimension. J. Symbolic Logic 68 (2003), no. 4, 1199--1241. doi:10.2178/jsl/1067620182. https://projecteuclid.org/euclid.jsl/1067620182


Export citation

References

  • P. Cholak, S. S. Goncharov, B. Khoussainov, and R. A. Shore Computably categorical structures and expansions by constants, Journal of Symbolic Logic, vol. 64 (1999), pp. 13--37.
  • Y. L. Ershov, S. S. Goncharov, A. Nerode, and J. B. Remmel (editors) Handbook of recursive mathematics, Studies in Logic and the Foundations of Mathematics, vol. 138--139, Elsevier Science, Amsterdam,1998.
  • S. S. Goncharov Computable single-valued numerations, Algebra and Logic, vol. 19 (1980), pp. 325--356.
  • V. S. Harizanov Pure computable model theory, in Ershov et al. [?], pp. 3--114.
  • D. R. Hirschfeldt Degree spectra of intrinsically c. e. relations, Journal of Symbolic Logic, vol. 66 (2001), pp. 441--469.
  • D. R. Hirschfeldt, B. Khoussainov, R. A. Shore, and A. M. Slinko Degree spectra and computable dimension in algebraic structures, Annals of Pure and Applied Logic, vol. 115 (2002), pp. 71--113.
  • B. Khoussainov and R. A. Shore Computable isomorphisms, degree spectra of relations, and Scott families, Annals of Pure and Applied Logic, vol. 93 (1998), pp. 153--193.
  • T. Millar Recursive categoricity and persistence, Journal of Symbolic Logic, vol. 51 (1986), pp. 430--434.
  • R. I. Soare Recursively enumerable sets and degrees, Perspectives in Mathematical Logic, Springer-Verlag, Heidelberg,1987.