Journal of Symbolic Logic

The axiom of choice and combinatory logic

Andrea Cantini

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We combine a variety of constructive methods (including forcing, realizability, asymmetric interpretation), to obtain consistency results concerning combinatory logic with extensionality and (forms of) the axiom of choice.

Article information

Source
J. Symbolic Logic, Volume 68, Issue 4 (2003), 1091-1108.

Dates
First available in Project Euclid: 31 October 2003

Permanent link to this document
https://projecteuclid.org/euclid.jsl/1067620175

Digital Object Identifier
doi:10.2178/jsl/1067620175

Mathematical Reviews number (MathSciNet)
MR2017343

Zentralblatt MATH identifier
1063.03007

Subjects
Primary: 03B40: Combinatory logic and lambda-calculus [See also 68N18] 03B55: Intermediate logics 03F50: Metamathematics of constructive systems 03F25: Relative consistency and interpretations 03F05: Cut-elimination and normal-form theorems

Citation

Cantini, Andrea. The axiom of choice and combinatory logic. J. Symbolic Logic 68 (2003), no. 4, 1091--1108. doi:10.2178/jsl/1067620175. https://projecteuclid.org/euclid.jsl/1067620175


Export citation

References

  • J. Avigad Interpreting classical theories in constructive ones, Journal of Symbolic Logic, vol. 65 (2000), pp. 1785--1812.
  • H. Barendregt Combinatory logic and the axiom of choice, Indagationes Mathematicae, vol. 35 (1973), pp. 203--221.
  • M. J. Beeson Foundations of constructive mathematics, Springer-Verlag, Berlin,1985.
  • M. Boffa, D. van Dalen, and K. McAloon (editors) Logic colloquium '78, Studies in Logic and the Foundations of Mathematics, North-Holland, Amsterdam,1979.
  • S. J. Buss Bounded arithmetic, Bibliopolis, Napoli,1986.
  • A. Cantini Notes on formal theories of truth, Zeitschrift für Mathematische Logik und die Grundlagen der Mathematik, vol. 35 (1989), pp. 97--130.
  • T. Coquand and M. Hofmann A new method for establishing conservativity of classical systems over their intuitionistic version, Mathematical Structures in Computer Science, vol. 9 (1999), pp. 323--333.
  • J. N. Crossley (editor) Algebra and logic, Lecture Notes in Mathematics, vol. 450, Springer-Verlag, Berlin,1975.
  • S. Feferman A language and axioms for explicit mathematics, in [?], pp. 87--139,1975.
  • F. Ferreira Polynomial time computable arithmetic, in [?], pp. 147--156,1990.
  • S. Goernemann A logic stronger than intuitionism, Journal of Symbolic Logic, vol. 36 (1971), pp. 249--261.
  • P. Minari Theories with types and names with positive stratified comprehension, Studia Logica, vol. 62 (1999), pp. 215--242.
  • W. Sieg (editor) Logic and computation, Contemporary Mathematics, American Mathematical Society, Providence, R. I.,1990.
  • A. S. Troelstra and H. Schwichtenberg Basic proof theory, Cambridge University Press,1997.
  • A. S. Troelstra and D. van Dalen Constructivism in mathematics, Studies in Logic and the Foundations of Mathematics, Elsevier-North Holland, Amsterdam,1988.