Journal of Symbolic Logic

Simulating polyadic modal logics by monadic ones

George Goguadze, Carla Piazza, and Yde Venema

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We define an interpretation of modal languages with polyadic operators in modal languages that use monadic operators (diamonds) only. We also define a simulation operator which associates a logic $\simL$ in the diamond language with each logic $\La$ in the language with polyadic modal connectives. We prove that this simulation operator transfers several useful properties of modal logics, such as finite/recursive axiomatizability, frame completeness and the finite model property, canonicity and first-order definability.

Article information

Source
J. Symbolic Logic, Volume 68, Issue 2 (2003), 419- 462.

Dates
First available in Project Euclid: 11 May 2003

Permanent link to this document
https://projecteuclid.org/euclid.jsl/1052669058

Digital Object Identifier
doi:10.2178/jsl/1052669058

Mathematical Reviews number (MathSciNet)
MR1976585

Zentralblatt MATH identifier
1059.03008

Citation

Goguadze, George; Piazza, Carla; Venema, Yde. Simulating polyadic modal logics by monadic ones. J. Symbolic Logic 68 (2003), no. 2, 419-- 462. doi:10.2178/jsl/1052669058. https://projecteuclid.org/euclid.jsl/1052669058


Export citation

References

  • J. van Benthem, G. D'Agostino, A. Montanari, and A. Policriti Modal deduction in second-order logic and set theory-I, Journal of Logic and Computation, vol. 7 (1997), no. 2, pp. 251--265.
  • P. Blackburn, M. de Rijke, and Y. Venema Modal Logic, Cambridge Tracts in Computer Science, Cambridge University Press, Cambridge,2001.
  • M. de Rijke (editor) Diamonds and defaults, Synthese Library, vol. 229, Kluwer Academic Publishers,1993.
  • K. Gödel Eine Interpretation des intuitionistischen Aussagenkalküls, Ergebnisse eines Mathematischen Kolloquiums, vol. 6 (1933), pp. 39--40.
  • R.I. Goldblatt Varieties of complex algebras, Annals of Pure and Applied Logic, vol. 38 (1989), pp. 173--241.
  • M.R. Hansen and C. Zhou Duration calculus: Logical foundations, Formal Aspects of Computing, vol. 9 (1997), pp. 283--330.
  • R. Hirsch and I. Hodkinson Relation Algebras by Games, Studies in Logic, vol. 147, Elsevier, Amsterdam,2002.
  • B. Jónsson and A. Tarski Boolean algebras with operators, Part I, American Journal of Mathematics, vol. 73 (1952), pp. 891--939.
  • M. Kracht Tools and Techniques in Modal Logic, Studies in Logic, vol. 142, Elsevier, Amsterdam,1999.
  • M. Kracht and F. Wolter Simulation and transfer results in modal logic: A survey, Studia Logica, vol. 59 (1997), pp. 149--177.
  • N. Kurtonina Categorial inference and modal logic, Journal of Logic, Language and Information, vol. 7 (1998), pp. 399--418.
  • J. Lambek The mathematics of sentence structure, American Mathematical Monthly, vol. 65 (1958), pp. 154--170.
  • M. Marx, L. Pólos, and M. Masuch (editors) Arrow Logic and Multi-Modal Logic, Studies in Logic, Language and Information, CSLI Publications,1996.
  • D. Roorda Dyadic modalities and Lambek calculus, Diamonds and Defaults (M. de Rijke, editor), Kluwer,1993, pp. 215--253.
  • S.K. Thomason Reduction of second-order logic to modal logic, Zeitschrift für Mathemathische Logik und Grundlagen der Mathematik, vol. 21 (1975), pp. 107--114.
  • Y. Venema A modal logic for chopping intervals, Journal of Logic and Computation, vol. 1 (1993), pp. 453--476.