Journal of Physical Mathematics

The Auxiliary Field Method in Quantum Mechanics

Fabien Buisseret, Claude Semay, and Bernard Silvestre-Brac

Full-text: Open access


The auxiliary field method is a new technique to obtain closed formulae for the solutions of eigenequations in quantum mechanics. The idea is to replace a Hamiltonian $H$ for which analytical solutions are not known by another one $\tilde H$, including one or more auxiliary fields, for which they are known. For instance, a potential $V(r)$ not solvable is replaced by another one $P(r)$ more familiar, or a semirelativistic kinetic part is replaced by an equivalent nonrelativistic one. If the auxiliary fields are eliminated by an extremization procedure, the Hamiltonian $\tilde H$ reduces to Hamiltonian $H$. The approximation comes from the replacement of these fields by pure real constants. The approximant solutions for $H$, eigenvalues and eigenfunctions, are then obtained by the solutions of $\tilde H$ in which the auxiliary parameters are eliminated by an extremization procedure for the eigenenergies, which takes the form of a transcendental equation to solve. If $H=T(\mathbf{p})+V(r)$ and if $P(r)$ is a power law, the approximate eigenvalues can be written $T(p_0)+V(r_0)$, where the mean impulsion $p_0$ is a function of the mean distance $r_0$ and where $r_0$ is determined by an equation which is linked to the generalized virial theorem. The general properties of the method are studied and the connections with the envelope theory presented. Its mean field and (anti)variational characters are also discussed. This method is first applied to nonrelativistic and semirelativistic two-body systems, with a great variety of potentials (sum of power laws, logarithm, exponential, square root). Closed formulae are produced for energies, eigenstates, various observables, and critical constants (when it is relevant), with sometimes a very good accuracy. The method is then used to solve nonrelativistic and semirelativistic many-body systems with one-body and two-body interactions. For such cases, analytical solutions can only be obtained for systems of identical particles, but several systems of interest for atomic and hadronic physics are studied. General results concerning the many-body critical constants are presented, as well as duality relations existing between approximate and exact eigenvalues.

Article information

J. Phys. Math., Volume 4 (2012), Article ID P120601, 82 pages.

First available in Project Euclid: 28 January 2013

Permanent link to this document

Digital Object Identifier

Zentralblatt MATH identifier

Primary: 81Q05: Closed and approximate solutions to the Schrödinger, Dirac, Klein- Gordon and other equations of quantum mechanics 81Q20: Semiclassical techniques, including WKB and Maslov methods

Quantum theory Closed and approximate solutionssolutions to Schrödinger equation Closed and approximate solutions to Dirac equation Closed and approximate solutions to Klein-Gordon equation Semiclassical techniques WKB method Maslov method


Silvestre-Brac, Bernard; Semay, Claude; Buisseret, Fabien. The Auxiliary Field Method in Quantum Mechanics. J. Phys. Math. 4 (2012), Article ID P120601, 82 pages. doi:10.4303/jpm/P120601.

Export citation


  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, Dover Publications, New York, 1970.
  • T. J. Allen, M. G. Olsson, and S. Veseli, Excited glue and the vibrating flux tube, Phys. Lett. B, 434 (1998), 110–114.
  • J. F. Arvis, The exact q$\overline{\text{q}}$ potential in Nambu string theory, Phys. Lett. B, 127 (1983), 106–108.
  • G. S. Bali, QCD forces and heavy quark bound states, Phys. Rep., 343 (2001), 1–136.
  • E. Bergshoeff, M. de Roo, B. de Wit, and P. Van Nieuwenhuizen, Ten-dimensional Maxwell-Einstein supergravity, its currents, and the issue of its auxiliary fields, Nuclear Phys. B, 195 (1982), 97–136.
  • S. K. Bose, A. Jabs, and H. J. W. Müller-Kirsten, Comments on quark-confinement potentials, Phys. Rev. D, 13 (1976), 1489–1493.
  • S. Boukraa and J.-L. Basdevant, Technical methods for solving bound-state equations in momentum space, J. Math. Phys., 30 (1989), 1060–1072.
  • N. Brambilla, G. M. Prosperi, and A. Vairo, Three-body relativistic flux tube model from QCD Wilson-loop approach, Phys. Lett. B, 362 (1995), 113–122.
  • F. Brau, Bohr-sommerfeld quantization and meson spectroscopy, Phys. Rev. D, 62 (2000), 014005.
  • F. Brau, Necessary and sufficient conditions for existence of bound states in a central potential, J. Phys. A, 36 (2003), 9907–9913.
  • F. Brau, Upper limit on the critical strength of central potentials in relativistic quantum mechanics, J. Math. Phys., 46 (2005), 032305.
  • F. Brau and F. Calogero, Upper and lower limits for the number of $S$-wave bound states in an attractive potential, J. Math. Phys., 44 (2003), 1554–1575.
  • F. Brau and F. Calogero, Upper and lower limits on the number of bound states in a central potential, J. Phys. A, 36 (2003), 12021–12063.
  • F. Brau and M. Lassaut, Critical strength of attractive central potentials, J. Phys. A, 37 (2004), 11243–11257.
  • L. Brillouin, La mécanique ondulatoire de Schrödinger: une méthode générale de resolution par approximations successives (French), Comptes Rendus de l'Académie des Sciences, 183 (1926), 24–26.
  • L. Brink, P. di Vecchia, and P. Howe, A Lagrangian formulation of the classical and quantum dynamics of spinning particles, Nuclear Phys. B, 118 (1977), 76–94.
  • F. Buisseret, N. Matagne, and C. Semay, Spin contribution to light baryons in different large-$N$ limits, Phys. Rev. D, 85 (2012), 036010.
  • F. Buisseret and V. Mathieu, Hybrid mesons with auxiliary fields, Eur. Phys. J. A, 29 (2006), 343–351.
  • F. Buisseret and C. Semay, Two- and three-body descriptions of hybrid mesons, Phys. Rev. D, 74 (2006), 114018.
  • F. Buisseret and C. Semay, Light baryon masses in different large-$N_c$ limits, Phys. Rev. D, 82 (2010), 056008.
  • F. Buisseret, C. Semay, V. Mathieu, and B. Silvestre-Brac, Excited flux tube from q$\overline{\text{q}}$g hybrid mesons, Eur. Phys. J. A, 32 (2007), 123–126.
  • F. Buisseret, C. Semay, and B. Silvestre-Brac, Some equivalences between the auxiliary field method and envelope theory, J. Math. Phys., 50 (2009), 032102.
  • K. M. Case, Singular potentials, Physical Rev., 80 (1950), 797–806.
  • G. S. Chaddha, ed., Quantum Mechanics, New Age International, New Delhi, India, 2005.
  • R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, On the Lambert $W$ function, Adv. Comput. Math., 5 (1996), 329–359.
  • S. Deser and B. Zumino, A complete action for the spinning string, Phys. Lett. B, 65 (1976), 369–373.
  • P. A. M. Dirac, Lectures on Quantum Mechanics, vol. 2 of Belfer Graduate School of Science Monographs Series, Belfer Graduate School of Science, New York, 1967.
  • A. Y. Dubin, A. B. Kaidalov, and Y. A. Simonov, The QCD string with quarks. I. Spinless quarks, Phys. Atom. Nucl., 56 (1993), 1745–1759.
  • B. Durand and L. Durand, Analytic solution of the relativistic Coulomb problem for a spinless Salpeter equation, Phys. Rev. D, 28 (1983), 396–406.
  • B. Durand and L. Durand, Erratum: “Analytic solution of the relativistic Coulomb problem for a spinless Salpeter equation” [Phys. Rev. D, 28 (1983), 396–406], Phys. Rev. D, 50 (1994), 6662.
  • M. Fabre de la Ripelle, A confining potential for quarks, Phys. Lett. B, 205 (1988), 97–102.
  • S. Ferrara and P. van Nieuwenhuizen, The auxiliary fields of supergravity, Phys. Lett. B, 74 (1978), 333–335.
  • R. P. Feynman, Forces in molecules, Phys. Rev., 56 (1939), 340–343.
  • S. Fleck, B. Silvestre-Brac, and J.-M. Richard, Search for diquark clustering in baryons, Phys. Rev. D, 38 (1988), 1519–1529.
  • S. Flügge, Practical Quantum Mechanics, Classics in Mathematics, Springer-Verlag, Berlin, 1999.
  • W. M. Frank, D. J. Land, and R. M. Spector, Singular potentials, Rev. Modern Phys., 43 (1971), 36–98.
  • J. L. Goity and N. Matagne, Baryon Regge trajectories in the light of the expansion, Phys. Lett. B, 655 (2007), 223–227.
  • I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, New York, 7th ed., 2007.
  • A. E. S. Green, Energy eigenvalues for Yukawa potentials, Phys. Rev. A, 26 (1982), 1759–1761.
  • D. J. Griffiths, Introduction to Quantum Mechanics, Prentice Hall, Englewood Cliffs, NJ, 1995.
  • R. L. Hall, Energy trajectories for the $N$-boson problem by the method of potential envelopes, Phys. Rev. D, 22 (1980), 2062–2072.
  • R. L. Hall, A geometrical theory of energy trajectories in quantum mechanics, J. Math. Phys., 24 (1983), 324–335.
  • R. L. Hall, Kinetic potentials in quantum mechanics, J. Math. Phys., 25 (1984), 2708–2715.
  • R. L. Hall, Spectral geometry of power-law potentials in quantum mechanics, Phys. Rev. A, 39 (1989), 5500–5507.
  • R. L. Hall, Refining the comparison theorem of quantum mechanics, J. Phys. A, 25 (1992), 4459–4469.
  • R. L. Hall, Envelope theory in spectral geometry, J. Math. Phys., 34 (1993), 2779–2788.
  • R. L. Hall, A simple interpolation formula for the spectra of power-law and log potentials, J. Phys. G, 26 (2000), 981–986.
  • R. L. Hall, Relativistic comparison theorems, Phys. Rev. A, 81 (2010), 052101.
  • R. L. Hall and Q. D. Katatbeh, Semiclassical energy formulae for power law and log potentials in quantum mechanics, J. Phys. A, 36 (2003), 7173–7184.
  • R. L. Hall, W. Lucha, and F. F. Schöberl, Energy bounds for the spinless Salpeter equation: harmonic oscillator, J. Phys. A, 34 (2001), 5059–5064.
  • R. L. Hall, W. Lucha, and F. F. Schöberl, Discrete spectra of semirelativistic Hamiltonians from envelope theory, Internat. J. Modern Phys. A, 17 (2002), 1931–1952.
  • R. L. Hall, W. Lucha, and F. F. Schöberl, Discrete spectra of semirelativistic Hamiltonians, Internat. J. Modern Phys. A, 18 (2003), 2657–2680.
  • R. L. Hall, W. Lucha, and F. F. Schöberl, The energy of a system of relativistic massless bosons bound by oscillator pair potentials, Phys. Lett. A, 320 (2003), 127–130.
  • R. L. Hall, W. Lucha, and F. F. Schöberl, Relativistic $N$-boson systems bound by pair potentials $V(r\sb {ij})=g(r\sb {ij}\sp 2)$, J. Math. Phys., 45 (2004), 3086–3094.
  • R. L. Hall and B. Schwesinger, The complete exact solution to the translation-invariant $N$-body harmonic oscillator problem, J. Math. Phys., 20 (1979), 2481–2483.
  • W. Heisenberg, Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen (German), Z. Phys., 33 (1925), 879–893.
  • H. Hellmann, Ein kombiniertes Näherungsverfahren zur Energieberechnung im Vielelektronenproblem (German), Acta Physicochimica U.R.S.S., 1 (1935), 913–940.
  • I. W. Herbst, Spectral theory of the operator $(p\sp{2}+m\sp{2})\sp{1/2}-Ze\sp{2}/r$, Comm. Math. Phys., 53 (1977), 285–294.
  • M. Honma, T. Mizusaki, and T. Otsuka, Diagonalization of Hamiltonians for many-body systems by auxiliary field quantum Monte Carlo technique, Phys. Rev. Lett., 75 (1995), 1284–1287.
  • P. S. Howe and R. W. Tucker, A locally supersymmetric and reparametrization invariant action for a spinning membrane, J. Phys. A, 10 (1977), L155–L158.
  • A. Jakovác, Renormalization of the O(N) model in the $1/N$ expansion in the auxiliary field formalism, Phys. Rev. D, 78 (2008), 085013.
  • H. Jeffreys, On certain approximate solutions of linear differential equations of the second order, Proc. Lond. Math. Soc., 23 (1924), 428–436.
  • Y. S. Kalashnikova and A. V. Nefediev, Heavy-light mesons spectrum from the nonperturbative QCD in the einbein field formalism, Phys. Lett. B, 492 (2000), 91–97.
  • B. S. Kandemir, Two interacting electrons in a uniform magnetic field and a parabolic potential: the general closed-form solution, J. Math. Phys., 46 (2005), 032110.
  • T. Kashiwa, Y. Ohnuki, and M. Suzuki, Path Integral Methods, Oxford University Press, Oxford, 1997.
  • H. A. Kramers, Wellenmechanik und halbzahlige Quantisierung (German), Z. Phys., 39 (1926), 828–840.
  • L. D. Landau and L. M. Lifshitz, Quantum Mechanics. Non-Relativistic Theory, Butterworth-Heinemann, Oxford, 3rd ed., 1981.
  • Z.-F. Li, J.-J. Liu, W. Lucha, W.-G. Ma, and F. F. Schöberl, Relativistic harmonic oscillator, J. Math. Phys., 46 (2005), 103514.
  • D. B. Lichtenberg, Application of a generalized Feynman-Hellmann theorem to bound-state energy levels, Phys. Rev. D, 40 (1989), 4196–4198.
  • E. H. Lieb and H.-T. Yau, The stability and instability of relativistic matter, Comm. Math. Phys., 118 (1988), 177–213.
  • W. Lucha, Relativistic virial theorems, Mod. Phys. Lett. A, 5 (1990), 2473–2483.
  • W. Lucha and F. F. Schöberl, Variational approach to the spinless relativistic Coulomb problem, Phys. Rev. D, 50 (1994), 5443–5445.
  • W. Lucha and F. F. Schöberl, Relativistic Coulomb problem: analytic upper bounds on energy levels, Phys. Rev. A, 54 (1996), 3790–3794.
  • W. Lucha and F. F. Schöberl, Relativistic Coulomb problem: lowest-lying energy levels at the critical coupling constant analytically, Phys. Lett. B, 387 (1996), 573–576.
  • W. Lucha and F. F. Schöberl, Solving the Schrödinger equation for bound states with Mathematica $3.0$, Internat. J. Modern Phys. C, 10 (1999), 607–620.
  • W. Lucha, F. F. Schöberl, and D. Gromes, Bound states of quarks, Phys. Rep., 200 (1991), 127–240.
  • Z.-Q. Ma, Exact solutions to the $N$-body Schrödinger equation for the harmonic oscillator, Found. Phys. Lett., 13 (2000), 167–178.
  • J. K. L. MacDonald, Successive approximations by the Rayleigh-Ritz variation method, Phys. Rev., 43 (1933), 830–833.
  • A. Martin, A fit of upsilon and charmonium spectra, Phys. Lett. B, 93 (1980), 338–342.
  • A. Martin, A simultaneous fit of bb, cc, ss (bcs Pairs) and cs spectra, Phys. Lett. B, 100 (1981), 511–514.
  • D. C. Mattis, ed., The Many-Body Problem. An Encyclopedia of Exactly Solved Models in One Dimension, World Scientific Publishing, River Edge, NJ, 1993.
  • V. L. Morgunov, A. V. Nefediev, and Y. A. Simonov, Rotating QCD string and the meson spectrum, Phys. Lett. B, 459 (1999), 653–659.
  • S. Moszkowski, S. Fleck, A. Krikeb, L. Theußl, J.-M. Richard, and K. Varga, Binding three or four bosons without bound subsystems, Phys. Rev. A, 62 (2000), 032504.
  • H. Nakada and Y. Alhassid, Total and parity-projected level densities of iron-region nuclei in the auxiliary fields monte carlo shell model, Phys. Rev. Lett., 79 (1997), 2939–2942.
  • I. M. Narodetskii, C. Semay, and A. I. Veselov, Accuracy of auxiliary field approach for baryons, Eur. Phys. J. C, 55 (2008), 403–408.
  • W. Pauli, Über das Wasserstoffspektrum vom Standpunkte der neuen Quantenmechanik (German), Z. Phys., 36 (1926), 336–363.
  • A. M. Polyakov, Quantum geometry of bosonic strings, Phys. Lett. B, 103 (1981), 207–210.
  • C. Quigg and J. L. Rosner, Quantum mechanics with applications to quarkonium, Phys. Rep., 56 (1979), 167–235.
  • M. Reed and B. Simon, Methods of Modern Mathematical Physics, Academic Press, New York, 1978.
  • J.-M. Richard and S. Fleck, Limits on the domain of coupling constants for binding $N$-body systems with no bound subsystems, Phys. Rev. Lett., 73 (1994), 1464–1467.
  • W. Ritz, Über eine neue methode zur lösung gewisser variationsprobleme der mathematischen physik (German), J. Reine Angew. Math., 135 (1909), 1–61.
  • A. Ronveaux, ed., Heun's Differential Equations, Oxford Science Publications, Oxford University Press, New York, 1995.
  • J. J. Sakurai, Modern Quantum Mechanics, Addison Wesley, Reading, MA, 1993.
  • M. G. Schmidt and C. Schubert, On the calculation of effective actions by string methods, Phys. Lett. B, 318 (1993), 438–446.
  • E. Schrödinger, Quantisierung als Eigenwertproblem. I (German), Ann. Phys., 79 (1926), 361–376.
  • E. Schrödinger, Quantisierung als Eigenwertproblem. III (German), Ann. Phys., 80 (1926), 437–490.
  • C. Semay, On relativistic models of light mesons, J. Phys. G, 20 (1994), 689–699.
  • C. Semay, General comparison theorem for eigenvalues of a certain class of Hamiltonians, Phys. Rev. A, 83 (2011), 024101.
  • C. Semay, Bounds for Hamiltonians with arbitrary kinetic parts, Results in Physics, 2 (2012), 114–117.
  • C. Semay, An upper bound for asymmetrical spinless Salpeter equations, Phys. Lett. A, 376 (2012), 2217–2221.
  • C. Semay, D. Baye, M. Hesse, and B. Silvestre-Brac, Semirelativistic Lagrange mesh calculations, Phys. Rev. E, 64 (2001), 016703.
  • C. Semay, F. Buisseret, N. Matagne, and F. Stancu, Baryonic mass formula in large $N_c$ QCD versus quark model, Phys. Rev. D, 75 (2007), 096001.
  • C. Semay, F. Buisseret, and B. Silvestre-Brac, Towers of hybrid mesons, Phys. Rev. D, 79 (2009), 094020.
  • C. Semay, F. Buisseret, and B. Silvestre-Brac, Further developments for the auxiliary field method, J. Phys. Math., 3 (2011), Article ID P111101.
  • C. Semay, F. Buisseret, and F. Stancu, Mass formula for strange baryons in large $N_c$ QCD versus quark model, Phys. Rev. D, 76 (2007), 116005.
  • C. Semay and B. Silvestre-Brac, Effects of the one-gluon annihilation process on light diquonia, Phys. Rev. D, 51 (1995), 1258–1266.
  • C. Semay and B. Silvestre-Brac, Eigenstates with the auxiliary field method, J. Phys. A, 43 (2010), 265302.
  • C. Semay, B. Silvestre-Brac, and I. M. Narodetskii, Auxiliary fields and hadron dynamics, Phys. Rev. D, 69 (2004), 014003.
  • B. Silvestre-Brac, The cluster model and the generalized Brody-Moshinsky coefficients, J. Physique, 46 (1985), 1087–1099.
  • B. Silvestre-Brac, Spectrum and static properties of heavy baryons, Few-Body Syst., 20 (1996), 1–25.
  • B. Silvestre-Brac and C. Semay, Duality relations in the auxiliary field method, J. Math. Phys., 52 (2011), 052107.
  • B. Silvestre-Brac, C. Semay, and F. Buisseret, Auxiliary fields as a tool for computing analytical solutions of the Schrödinger equation, J. Phys. A, 41 (2008), 275301.
  • B. Silvestre-Brac, C. Semay, and F. Buisseret, Extensions of the auxiliary field method to solve Schrödinger equations, J. Phys. A, 41 (2008), 425301.
  • B. Silvestre-Brac, C. Semay, and F. Buisseret, The auxiliary field method and approximate analytical solutions of the Schrödinger equation with exponential potentials, J. Phys. A, 42 (2009), 245301.
  • B. Silvestre-Brac, C. Semay, and F. Buisseret, Auxiliary field method for the square root potential. preprint,, 2009.
  • B. Silvestre-Brac, C. Semay, and F. Buisseret, Semirelativistic hamiltonians and the auxiliary field method, Internat. J. Modern Phys. A, 24 (2009), 4695–4726.
  • B. Silvestre-Brac, C. Semay, F. Buisseret, and F. Brau, The quantum $\mathscr{N}$-body problem and the auxiliary field method, J. Math. Phys., 51 (2010), 032104.
  • Y. A. Simonov, Baryon Regge trajectories from the area law of the Wilson loop, Phys. Lett. B, 228 (1989), 413–419.
  • Y. A. Simonov, Regge trajectories from QCD, Phys. Lett. B, 226 (1989), 151–155.
  • A. G. Ushveridze, Quasi-Exactly Solvable Models in Quantum Mechanics, Institute of Physics Publishing, Bristol, 1994.
  • P. van Nieuwenhuizen, Supergravity, Phys. Rep., 68 (1981), 189–398.
  • G. Wentzel, Eine Verallgemeinerung der Quantenbedingungen für die Zwecke der Wellenmechanik (German), Z. Phys., 38 (1926), 518–529.
  • J. Wess and J. Bagger, Supersymmetry and Supergravity, Princeton Series in Physics, Princeton University Press, Princeton, NJ, 2nd ed., 1992.
  • K. G. Wilson, Confinement of quarks, Phys. Rev. D, 10 (1974), 2445–2459.
  • B. Zwiebach, A First Course in String Theory, Cambridge University Press, Cambridge, 2004.