Open Access
October, 2019 Optimal problem for mixed $p$-capacities
Baocheng ZHU, Xiaokang LUO
J. Math. Soc. Japan 71(4): 1049-1079 (October, 2019). DOI: 10.2969/jmsj/80268026
Abstract

In this paper, the optimal problem for mixed $p$-capacities is investigated. The Orlicz and $L_q$ geominimal $p$-capacities are proposed and their properties, such as invariance under orthogonal matrices, isoperimetric type inequalities and cyclic type inequalities are provided as well. Moreover, the existence of the $p$-capacitary Orlicz–Petty bodies for multiple convex bodies is established, and the Orlicz and $L_q$ mixed geominimal $p$-capacities for multiple convex bodies are introduced. The continuity of the Orlicz mixed geominimal $p$-capacities and some isoperimetric type inequalities of the $L_q$ mixed geominimal $p$-capacities are proved.

References

1.

[1] A. D. Aleksandrov, On the theory of mixed volumes, I, Extension of certain concepts in the theory of convex bodies, Mat. Sb. (N. S.), 2 (1937), 947–972. 0017.42603[1] A. D. Aleksandrov, On the theory of mixed volumes, I, Extension of certain concepts in the theory of convex bodies, Mat. Sb. (N. S.), 2 (1937), 947–972. 0017.42603

2.

[2] S. Alesker, Continuous rotation invariant valuations on convex sets, Ann. of Math., 149 (1999), 977–1005. 0941.52002 10.2307/121078[2] S. Alesker, Continuous rotation invariant valuations on convex sets, Ann. of Math., 149 (1999), 977–1005. 0941.52002 10.2307/121078

3.

[3] S. Alesker, Description of translation invariant valuations on convex sets with a solution of P. McMullen's conjecture, Geom. Funct. Anal., 11 (2001), 244–272. 0995.52001 10.1007/PL00001675[3] S. Alesker, Description of translation invariant valuations on convex sets with a solution of P. McMullen's conjecture, Geom. Funct. Anal., 11 (2001), 244–272. 0995.52001 10.1007/PL00001675

4.

[4] W. Blaschke, Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie II, Affine Differentialgeometrie, Springer-Verlag, Berlin, 1923.[4] W. Blaschke, Vorlesungen über Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitätstheorie II, Affine Differentialgeometrie, Springer-Verlag, Berlin, 1923.

5.

[5] J. Bourgain and V. D. Milman, New volume ratio properties for convex symmetric bodies in $\mathbb{R}^n$, Invent. Math., 88 (1987), 319–340. 0617.52006 10.1007/BF01388911[5] J. Bourgain and V. D. Milman, New volume ratio properties for convex symmetric bodies in $\mathbb{R}^n$, Invent. Math., 88 (1987), 319–340. 0617.52006 10.1007/BF01388911

6.

[6] A. Colesanti, K. Nyström, P. Salani, J. Xiao, D. Yang and G. Zhang, The Hadamard variational formula and the Minkowski problem for $p$-capacity, Adv. Math., 285 (2015), 1511–1588. 1327.31024 10.1016/j.aim.2015.06.022[6] A. Colesanti, K. Nyström, P. Salani, J. Xiao, D. Yang and G. Zhang, The Hadamard variational formula and the Minkowski problem for $p$-capacity, Adv. Math., 285 (2015), 1511–1588. 1327.31024 10.1016/j.aim.2015.06.022

7.

[7] A. Colesanti and P. Salani, The Brunn–Minkowski inequality for $p$-capacity of convex bodies, Math. Ann., 327 (2003), 459–479. 1052.31005 10.1007/s00208-003-0460-7[7] A. Colesanti and P. Salani, The Brunn–Minkowski inequality for $p$-capacity of convex bodies, Math. Ann., 327 (2003), 459–479. 1052.31005 10.1007/s00208-003-0460-7

8.

[8] L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions, First edition, CRC Press, 1991. 0804.28001[8] L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions, First edition, CRC Press, 1991. 0804.28001

9.

[9] W. Fenchel and B. Jessen, Mengenfunktionen und konvexe körper, Danske Vid. Selskab. Mat.-fys. Medd., 16 (1938), 1–31.[9] W. Fenchel and B. Jessen, Mengenfunktionen und konvexe körper, Danske Vid. Selskab. Mat.-fys. Medd., 16 (1938), 1–31.

10.

[10] R. J. Gardner, Geometric tomography, Cambridge Univ. Press, Cambridge, 1995. 0864.52001[10] R. J. Gardner, Geometric tomography, Cambridge Univ. Press, Cambridge, 1995. 0864.52001

11.

[11] P. M. Gruber, Aspects of approximation of convex bodies, Handbook of Convex Geometry, A, North Holland, 1993, 321–345. 0791.52007[11] P. M. Gruber, Aspects of approximation of convex bodies, Handbook of Convex Geometry, A, North Holland, 1993, 321–345. 0791.52007

12.

[12] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge Univ. Press, London, 1934.[12] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge Univ. Press, London, 1934.

13.

[13] H. Hong, D. Ye and N. Zhang, The $p$-capacitary Orlicz–Hadamard variational formula and Orlicz–Minkowski problems, Calc. Var. Partial Differential Equations, 57 (2018), Art. 5, 31pp.[13] H. Hong, D. Ye and N. Zhang, The $p$-capacitary Orlicz–Hadamard variational formula and Orlicz–Minkowski problems, Calc. Var. Partial Differential Equations, 57 (2018), Art. 5, 31pp.

14.

[14] G. Kuperberg, From the Mahler conjecture to Gauss linking integrals, Geom. Funct. Anal., 18 (2008), 870–892. 1169.52004 10.1007/s00039-008-0669-4[14] G. Kuperberg, From the Mahler conjecture to Gauss linking integrals, Geom. Funct. Anal., 18 (2008), 870–892. 1169.52004 10.1007/s00039-008-0669-4

15.

[15] M. Ludwig, General affine surface areas, Adv. Math., 224 (2010), 2346–2360. 1198.52004 10.1016/j.aim.2010.02.004[15] M. Ludwig, General affine surface areas, Adv. Math., 224 (2010), 2346–2360. 1198.52004 10.1016/j.aim.2010.02.004

16.

[16] M. Ludwig and M. Reitzner, A characterization of affine surface area, Adv. Math., 147 (1999), 138–172. 0947.52003 10.1006/aima.1999.1832[16] M. Ludwig and M. Reitzner, A characterization of affine surface area, Adv. Math., 147 (1999), 138–172. 0947.52003 10.1006/aima.1999.1832

17.

[17] M. Ludwig and M. Reitzner, A classification of ${\rm SL}(n)$ invariant valuations, Ann. of Math., 172 (2010), 1219–1267. 1223.52007 10.4007/annals.2010.172.1223[17] M. Ludwig and M. Reitzner, A classification of ${\rm SL}(n)$ invariant valuations, Ann. of Math., 172 (2010), 1219–1267. 1223.52007 10.4007/annals.2010.172.1223

18.

[18] M. Ludwig, C. Schütt and E. Werner, Approximation of the Euclidean ball by polytopes, Studia Math., 173 (2006), 1–18.[18] M. Ludwig, C. Schütt and E. Werner, Approximation of the Euclidean ball by polytopes, Studia Math., 173 (2006), 1–18.

19.

[19] X. Luo, D. Ye and B. Zhu, On the polar Orlicz–Minkowski problems and the $p$-capacitary Orlicz–Petty bodies, to appear in Indiana Univ. Math. J., arXiv:1802.07777. 1802.07777[19] X. Luo, D. Ye and B. Zhu, On the polar Orlicz–Minkowski problems and the $p$-capacitary Orlicz–Petty bodies, to appear in Indiana Univ. Math. J., arXiv:1802.07777. 1802.07777

20.

[20] E. Lutwak, Dual mixed volumes, Pac. J. Math., 58 (1975), 531–538. 0273.52007 10.2140/pjm.1975.58.531 euclid.pjm/1102905685[20] E. Lutwak, Dual mixed volumes, Pac. J. Math., 58 (1975), 531–538. 0273.52007 10.2140/pjm.1975.58.531 euclid.pjm/1102905685

21.

[21] E. Lutwak, The Brunn–Minkowski–Firey theory II, Affine and geominimal surface areas, Adv. Math., 118 (1996), 244–294. 0853.52005 10.1006/aima.1996.0022[21] E. Lutwak, The Brunn–Minkowski–Firey theory II, Affine and geominimal surface areas, Adv. Math., 118 (1996), 244–294. 0853.52005 10.1006/aima.1996.0022

22.

[22] M. Meyer and A. Pajor, On the Blaschke–Santaló inequality, Arch. Math., 55 (1990), 82–93.[22] M. Meyer and A. Pajor, On the Blaschke–Santaló inequality, Arch. Math., 55 (1990), 82–93.

23.

[23] F. Nazarov, The Hörmander Proof of the Bourgain–Milman Theorem, Geom. Funct. Anal. Lecture Notes in Math., 2050 (2012), 335–343.[23] F. Nazarov, The Hörmander Proof of the Bourgain–Milman Theorem, Geom. Funct. Anal. Lecture Notes in Math., 2050 (2012), 335–343.

24.

[24] C. M. Petty, Geominimal surface area, Geom. Dedicata, 3 (1974), 77–97. 0285.52006 10.1007/BF00181363[24] C. M. Petty, Geominimal surface area, Geom. Dedicata, 3 (1974), 77–97. 0285.52006 10.1007/BF00181363

25.

[25] R. Schneider, Convex Bodies: The Brunn–Minkowski theory, Second edition, Cambridge Univ. Press, 2014.[25] R. Schneider, Convex Bodies: The Brunn–Minkowski theory, Second edition, Cambridge Univ. Press, 2014.

26.

[26] C. Schütt and E. Werner, Surface bodies and $p$-affine surface area, Adv. Math., 187 (2004), 98–145.[26] C. Schütt and E. Werner, Surface bodies and $p$-affine surface area, Adv. Math., 187 (2004), 98–145.

27.

[27] W. Wang and G. Leng, $L_p$-mixed affine surface area, J. Math. Anal. Appl., 335 (2007), 341–354. 1123.52003 10.1016/j.jmaa.2007.01.046[27] W. Wang and G. Leng, $L_p$-mixed affine surface area, J. Math. Anal. Appl., 335 (2007), 341–354. 1123.52003 10.1016/j.jmaa.2007.01.046

28.

[28] E. Werner, Rényi Divergence and $L_p$-affine surface area for convex bodies, Adv. Math., 230 (2012), 1040–1059.[28] E. Werner, Rényi Divergence and $L_p$-affine surface area for convex bodies, Adv. Math., 230 (2012), 1040–1059.

29.

[29] E. Werner and D. Ye, Inequalities for mixed $p$-affine surface area, Math. Ann., 347 (2010), 703–737. 1192.52013 10.1007/s00208-009-0453-2[29] E. Werner and D. Ye, Inequalities for mixed $p$-affine surface area, Math. Ann., 347 (2010), 703–737. 1192.52013 10.1007/s00208-009-0453-2

30.

[30] J. Xiao and N. Zhang, Geometric estimates for variational capacities, preprint.[30] J. Xiao and N. Zhang, Geometric estimates for variational capacities, preprint.

31.

[31] D. Ye, $L_p$ geominimal surface areas and their inequalities, Int. Math. Res. Not., 2015 (2015), 2465–2498. 1326.53086[31] D. Ye, $L_p$ geominimal surface areas and their inequalities, Int. Math. Res. Not., 2015 (2015), 2465–2498. 1326.53086

32.

[32] D. Ye, New Orlicz affine isoperimetric inequalities, J. Math. Anal. Appl., 427 (2015), 905–929. 1316.52014 10.1016/j.jmaa.2015.02.084[32] D. Ye, New Orlicz affine isoperimetric inequalities, J. Math. Anal. Appl., 427 (2015), 905–929. 1316.52014 10.1016/j.jmaa.2015.02.084

33.

[33] D. Ye, B. Zhu and J. Zhou, The mixed $L_p$ geominimal surface area for multiple convex bodies, Indiana Univ. Math. J., 64 (2015), 1513–1552. 1335.52012 10.1512/iumj.2015.64.5623[33] D. Ye, B. Zhu and J. Zhou, The mixed $L_p$ geominimal surface area for multiple convex bodies, Indiana Univ. Math. J., 64 (2015), 1513–1552. 1335.52012 10.1512/iumj.2015.64.5623

34.

[34] S. Yuan, H. Jin and G. Leng, Orlicz geominimal surface areas, Math. Ineq. Appl., 18 (2015), 353–362. 1309.52006 10.7153/mia-18-25[34] S. Yuan, H. Jin and G. Leng, Orlicz geominimal surface areas, Math. Ineq. Appl., 18 (2015), 353–362. 1309.52006 10.7153/mia-18-25

35.

[35] B. Zhu, H. Hong and D. Ye, The Orlicz–Petty bodies, Int. Math. Res. Not., 2018 (2018), 4356–4403. 1409.52010 10.1093/imrn/rnx008[35] B. Zhu, H. Hong and D. Ye, The Orlicz–Petty bodies, Int. Math. Res. Not., 2018 (2018), 4356–4403. 1409.52010 10.1093/imrn/rnx008

36.

[36] B. Zhu, J. Zhou and W. Xu, $L_p$ mixed geominimal surface area, J. Math. Anal. Appl., 422 (2015), 1247–1263. 1321.52003 10.1016/j.jmaa.2014.09.035[36] B. Zhu, J. Zhou and W. Xu, $L_p$ mixed geominimal surface area, J. Math. Anal. Appl., 422 (2015), 1247–1263. 1321.52003 10.1016/j.jmaa.2014.09.035
Copyright © 2019 Mathematical Society of Japan
Baocheng ZHU and Xiaokang LUO "Optimal problem for mixed $p$-capacities," Journal of the Mathematical Society of Japan 71(4), 1049-1079, (October, 2019). https://doi.org/10.2969/jmsj/80268026
Received: 6 April 2018; Published: October, 2019
Vol.71 • No. 4 • October, 2019
Back to Top