Journal of the Mathematical Society of Japan

On an upper bound of $\lambda$-invariants of $\mathbb{Z}_p$-extensions over an imaginary quadratic field

Kazuaki MURAKAMI

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

For an odd prime number $p$, we give an explicit upper bound of $\lambda$-invariants for all $\mathbb{Z}_p$-extensions of an imaginary quadratic field $k$ under several assumptions. We also give an explicit upper bound of $\lambda$-invariants for all $\mathbb{Z}_p$-extensions of $k$ in the case where the $\lambda$-invariant of the cyclotomic $\mathbb{Z}_p$-extension of $k$ is equal to 3.

Note

The author is partially supported by JSPS Core-to-core program, Foundation of a Global Research Cooperative Center in Mathematics focused on Number Theory.

Article information

Source
J. Math. Soc. Japan, Volume 71, Number 3 (2019), 1005-1026.

Dates
Received: 27 December 2016
Revised: 2 April 2018
First available in Project Euclid: 25 April 2019

Permanent link to this document
https://projecteuclid.org/euclid.jmsj/1556179397

Digital Object Identifier
doi:10.2969/jmsj/77017701

Mathematical Reviews number (MathSciNet)
MR3984250

Zentralblatt MATH identifier
07121561

Subjects
Primary: 11R23: Iwasawa theory
Secondary: 11R11: Quadratic extensions

Keywords
Iwasawa invariant $\mathbb{Z}_p$-extension $\mathbb{Z}_p^2$-extension imaginary quadratic field

Citation

MURAKAMI, Kazuaki. On an upper bound of $\lambda$-invariants of $\mathbb{Z}_p$-extensions over an imaginary quadratic field. J. Math. Soc. Japan 71 (2019), no. 3, 1005--1026. doi:10.2969/jmsj/77017701. https://projecteuclid.org/euclid.jmsj/1556179397


Export citation

References

  • [1] A. Brumer, On the units of algebraic number fields, Mathematika, 14 (1967), 121–124.
  • [2] N. Bourbaki, Commutative algebra, Hermann/Addison-Wesley, 1972.
  • [3] R. Greenberg, The Iwasawa invariants of $\Gamma$-extensions of a fixed number field, Amer. J. Math., 95 (1973), 204–214.
  • [4] R. Greenberg, Iwasawa theory—past and present, In: Class Field Theory—Its Centenary and Prospect, (ed. K. Miyake), Adv. Stud. Pure Math., 30, Math. Soc. Japan, Tokyo, 2001, 335–385.
  • [5] S. Fujii, On a bound of $\lambda$ and the vanishing of $\mu$ of $\mathbb{Z}_p$-extensions of an imaginary quadratic field, J. Math. Soc. Japan, 65 (2013), 277–298.
  • [6] K. Iwasawa, On $\Gamma$-extensions of algebraic number fields, Bull. Amer. Math. Soc., 65 (1959), 183–226.
  • [7] J. F. Jaulent and J. W. Sands, Sur quelques modules d'Iwasawa semi-simples, Compositio Math., 99 (1995), 325–341.
  • [8] T. Kataoka, A consequence of Greenberg's generalized conjecture on Iwasawa invariants of $\mathbb{Z}_p$-extensions, J. Number Theory, 172 (2017), 200–233.
  • [9] S. Lang, Cyclotomic fields I and II, Grad. Texts in Math., 121, Springer-Verlag, New York, 1990.
  • [10] J. Minardi, Iwasawa modules for $\mathbb{Z}_p^d$-extensions of algebraic number fields, Thesis (1986), University of Washington.
  • [11] J. Neukirch, A. Schmidt and K. Wingberg, Cohomology of number fields, Second edition, Grundlehren der Mathematischen Wissenschaften, 323, Springer, 2008.
  • [12] K. Okano, Abelian $p$-class field towers over the cyclotomic $\mathbb{Z}_p$-extensions of imaginary quadratic fields, Acta Arith., 125 (2006), 363–381.
  • [13] M. Ozaki, Iwasawa invariants of $\mathbb{Z}_p$-extensions over an imaginary quadratic field, In: Class Field Theory—Its Centenary and Prospect, (ed. K. Miyake), Adv. Stud. Pure Math., 30, Math. Soc. Japan, Tokyo, 2001, 387–399.
  • [14] J. W. Sands, On small Iwasawa invariants and imaginary quadratic fields, Proc. Amer. Math. Soc., 112 (1991), 671–684.
  • [15] L. C. Washington, Introduction to cyclotomic fields, Second edition, Grad. Texts in Math., 83, Springer-Verlag, New York, 1997.