Journal of the Mathematical Society of Japan

On bifurcations of cusps


Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


Let $F_t$, where $t \in \mathbb{R}$, be an analytic family of plane-to-plane mappings with $F_0$ having a critical point at the origin. The paper presents effective algebraic methods of computing the number of those cusp points of $F_t$, where $0 < |t|\ll 1$, emanating from the origin at which $F_t$ has a positive/negative local topological degree.

Article information

J. Math. Soc. Japan, Volume 71, Number 2 (2019), 555-567.

Received: 8 November 2017
First available in Project Euclid: 25 February 2019

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 14P15: Real analytic and semianalytic sets [See also 32B20, 32C05]
Secondary: 58K05: Critical points of functions and mappings

singularities bifurcations cusps


SZAFRANIEC, Zbigniew. On bifurcations of cusps. J. Math. Soc. Japan 71 (2019), no. 2, 555--567. doi:10.2969/jmsj/79217921.

Export citation


  • [1] K. Aoki, T. Fukuda and T. Nishimura, On the number of branches of the zero locus of a map germ $(\mathbb{R}^n,0) \rightarrow (\mathbb{R}^{n-1},0)$, In: Topology and Computer Science, Proceedings of the Symposium held in honour of S. Kinoshita, H. Noguchi and T. Homma on the occasion of their sixtieth birthdays, 1987, 347–363.
  • [2] K. Aoki, T. Fukuda and T. Nishimura, An algebraic formula for the topological types of one parameter bifurcations diagrams, Archive for Rational Mechanics and Analysis, 108 (1989), 247–265.
  • [3] F. Cucker, L. M. Pardo, M. Raimondo, T. Recio and M.-F. Roy, On the computation of the local and global analytic branches of a real algebraic curve, In: Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Lecture Notes in Computer Sci., Springer-Verlag, 356 (1989), 161–181.
  • [4] J. Damon, On the number of branches for real and complex weighted homogeneous curve singularities, Topology, 30 (1991), 223–229.
  • [5] J. Damon, $G$-signature, $G$-degree, and symmetries of the branches of curve singularities, Topology, 30 (1991), 565–590.
  • [6] W. Decker, G.-M. Greuel, G. Pfister and H. Schönemann, Singular 4-1-1, A Computer Algebra System for Polynomial Computations,, (2018).
  • [7] N. Dutertre and T. Fukui, On the topology of stable maps, J. Math. Soc. Japan, 66 (2014), 161–203.
  • [8] Ja. M. Èliašberg, On singularities of folding type, Math. USSR-Izv., 4 (1970), 1119–1134.
  • [9] T. Fukuda, K. Aoki and W. Z. Sun, On the number of branches of a plane curve germ, Kodai Math. J., 9 (1986), 179–187.
  • [10] T. Fukuda and G. Ishikawa, On the number of cusps of stable perturbations of a plane-to-plane singularity, Tokyo J. Math., 10 (1987), 375–384.
  • [11] T. Fukuda, Topological triviality of plane-to-plane singularities, In: Geometry and its applications (Yokohama, 1991), World Sci. Publ., River Edge, NJ, 1993, 29–37.
  • [12] T. Fukui, An algebraic formula for a topological invariant of bifurcation of 1-parameter family of function-germs, In: Stratifications, singularities, and differential equations, II, (Marseille, 1990; Honolulu, HI, 1990), Travaux en Cours, 55, Hermann, Paris, 1997, 45–54.
  • [13] T. Gaffney and D. Mond, Cusps and double folds of germs of analytic mappings $\mathbb{C}^2 \rightarrow \mathbb{C}^2$, J. London Math. Soc., 43 (1991), 185–192.
  • [14] K. Ikegami and O. Saeki, Cobordism of Morse maps and its application to map germs, Math. Proc. Cambridge Philos. Soc., 147 (2009), 235–254.
  • [15] G. M. Khimshiashvili, On the local degree of a smooth mapping, Comm. Acad. Sci. Georgian SSR, 85 (1977), 309–311.
  • [16] G. M. Khimshiashvili, On the local degree of a smooth mapping, Trudy Tbilisi Math. Inst., 64 (1980), 105–124.
  • [17] I. Krzyżanowska and Z. Szafraniec, On polynomial mappings from the plane to the plane, J. Math. Soc. Japan, 66 (2014), 805–818.
  • [18] H. I. Levine, Mappings of manifolds into the plane, Amer. J. Math., 88 (1966), 357–365.
  • [19] A. Łȩcki and Z. Szafraniec, Applications of the Eisenbud–Levine theorem to real algebraic geometry, In: Computational Algebraic Geometry, Progr. in Math., 109, Birkhäuser Boston, Boston, MA, 1993, 177–184.
  • [20] J. Montaldi and D. van Straten, One-forms on singular curves and the topology of real curve singularities, Topology, 29 (1990), 501–510.
  • [21] J. A. Moya-Pérez and J. J. Nuño-Ballesteros, The link of a finitely determined map germ from $\mathbb{R}^2$ to $\mathbb{R}^2$, J. Math. Soc. Japan, 62 (2010), 1069–1092.
  • [22] J. A. Moya-Pérez and J. J. Nuño-Ballesteros, Topological triviality of families of map germs from $\mathbb{R}^2$ to $\mathbb{R}^2$, J. of Singularities, 6 (2012), 112–123.
  • [23] A. Nowel and Z. Szafraniec, On the number of branches of a real curve singularities, Bull. London Math. Soc., 43 (2011), 1004–1020.
  • [24] J. R. Quine, A global theorem for singularities of maps between oriented 2-manifolds, Trans. Amer. Math. Soc., 236 (1978), 307–314.
  • [25] J. H. Rieger, Families of maps from the plane to the plane, J. London Math. Soc., 36 (1987), 351–369.
  • [26] Z. Szafraniec, On the number of branches of a 1-dimensional semianalytic set, Kodai Math. J., 11 (1988), 78–85.
  • [27] Z. Szafraniec, A formula for the number of branches of one-dimensional semianalytic sets, Math. Proc. Cambridge Philos. Soc., 112 (1992), 527–534.
  • [28] R. Thom, Les singularités des applications différentiables, Ann. Inst. Fourier, Grenoble, 6 (1955–1956), 43–87.
  • [29] H. Whitney, On singularities of mappings of Euclidean spaces, I, Mappings of the plane into the plane, Annals of Math., 62 (1955), 374–410.