Journal of the Mathematical Society of Japan

Needle decompositions and isoperimetric inequalities in Finsler geometry

Shin-ichi OHTA

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Klartag recently gave a beautiful alternative proof of the isoperimetric inequalities of Lévy–Gromov, Bakry–Ledoux, Bayle and Milman on weighted Riemannian manifolds. Klartag's approach is based on a generalization of the localization method (so-called needle decompositions) in convex geometry, inspired also by optimal transport theory. Cavalletti and Mondino subsequently generalized the localization method, in a different way more directly along optimal transport theory, to essentially non-branching metric measure spaces satisfying the curvature-dimension condition. This class in particular includes reversible (absolutely homogeneous) Finsler manifolds. In this paper, we construct needle decompositions of non-reversible (only positively homogeneous) Finsler manifolds, and show an isoperimetric inequality under bounded reversibility constants. A discussion on the curvature-dimension condition $\mathrm{CD}(K,N)$ for $N=0$ is also included, it would be of independent interest.

Article information

Source
J. Math. Soc. Japan, Volume 70, Number 2 (2018), 651-693.

Dates
First available in Project Euclid: 18 April 2018

Permanent link to this document
https://projecteuclid.org/euclid.jmsj/1524038669

Digital Object Identifier
doi:10.2969/jmsj/07027604

Mathematical Reviews number (MathSciNet)
MR3787735

Zentralblatt MATH identifier
06902437

Subjects
Primary: 53C60: Finsler spaces and generalizations (areal metrics) [See also 58B20]
Secondary: 49Q20: Variational problems in a geometric measure-theoretic setting

Keywords
Finsler geometry Ricci curvature localization isoperimetric inequality

Citation

OHTA, Shin-ichi. Needle decompositions and isoperimetric inequalities in Finsler geometry. J. Math. Soc. Japan 70 (2018), no. 2, 651--693. doi:10.2969/jmsj/07027604. https://projecteuclid.org/euclid.jmsj/1524038669


Export citation

References

  • L. Ambrosio, N. Gigli, A. Mondino and T. Rajala, Riemannian Ricci curvature lower bounds in metric measure spaces with $\sigma$-finite measure, Trans. Amer. Math. Soc., 367 (2015), 4661–4701.
  • L. Ambrosio, N. Gigli and G. Savaré, Gradient flows in metric spaces and in the space of probability measures, Birkhäuser Verlag, Basel, 2005.
  • L. Ambrosio, N. Gigli and G. Savaré, Metric measure spaces with Riemannian Ricci curvature bounded from below, Duke Math. J., 163 (2014), 1405–1490.
  • L. Ambrosio and A. Mondino, Gaussian-type isoperimetric inequalities in $RCD(K,\infty)$ probability spaces for positive $K$, Rend. Lincei Mat. Appl., 27 (2016), 497–514.
  • L. Auslander, On curvature in Finsler geometry, Trans. Amer. Math. Soc., 79 (1955), 378–388.
  • D. Bakry, L'hypercontractivité et son utilisation en théorie des semigroupes, (French) Lectures on probability theory (Saint-Flour, 1992), Lecture Notes in Math., 1581, Springer, Berlin, 1994, 1–114.
  • D. Bakry and M. Ledoux, Lévy–Gromov's isoperimetric inequality for an infinite-dimensional diffusion generator, Invent. Math., 123 (1996), 259–281.
  • D. Bao, S.-S. Chern and Z. Shen, An introduction to Riemann–Finsler geometry, Springer-Verlag, New York, 2000.
  • V. Bayle, Propriétés de concavité du profil isopérimétrique et applications (French), Thése de Doctorat, Institut Fourier, Universite Joseph-Fourier, Grenoble, 2003.
  • V. Bayle and C. Rosales, Some isoperimetric comparison theorems for convex bodies in Riemannian manifolds, Indiana Univ. Math. J., 54 (2005), 1371–1394.
  • G. Beer and L. Villar, Borel measures and Hausdorff distance, Trans. Amer. Math. Soc., 307 (1988), 763–772.
  • S. Bianchini and F. Cavalletti, The Monge problem for distance cost in geodesic spaces, Comm. Math. Phys., 318 (2013), 615–673.
  • Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions, Comm. Pure Appl. Math., 44 (1991), 375–417.
  • F. Cavalletti, Monge problem in metric measure spaces with Riemannian curvature-dimension condition, Nonlinear Anal., 99 (2014), 136–151.
  • F. Cavalletti, Decomposition of geodesics in the Wasserstein space and the globalization problem, Geom. Funct. Anal., 24 (2014), 493–551.
  • F. Cavalletti and A. Mondino, Sharp and rigid isoperimetric inequalities in metric-measure spaces with lower Ricci curvature bounds, Invent. Math., 208 (2017), 803–849.
  • F. Cavalletti and A. Mondino, Sharp geometric and functional inequalities in metric measure spaces with lower Ricci curvature bounds, Geom. Topol., 21 (2017), 603–645.
  • D. Cordero-Erausquin, R. J. McCann and M. Schmuckenschläger, A Riemannian interpolation inequality à la Borell, Brascamp and Lieb, Invent. Math., 146 (2001), 219–257.
  • C. Dellacherie, P.-A. Meyer, Probabilities and potential, North-Holland Publishing Co., Amsterdam-New York, 1978.
  • M Erbar, K. Kuwada and K.-T. Sturm, On the equivalence of the entropic curvature-dimension condition and Bochner's inequality on metric measure spaces, Invent. Math., 201 (2015), 993–1071.
  • L. C. Evans and W. Gangbo, Differential equations methods for the Monge–Kantorovich mass transfer problem, Mem. Amer. Math. Soc., 137 (1999).
  • M. Feldman and R. J. McCann, Monge's transport problem on a Riemannian manifold, Trans. Amer. Math. Soc., 354 (2002), 1667–1697.
  • M. Gromov, Metric structures for Riemannian and non-Riemannian spaces, Based on the 1981 French original, Translated from the French by Sean Michael Bates, Birkhäuser Boston, Inc., Boston, MA, 1999.
  • M. Gromov and V. D. Milman, Generalization of the spherical isoperimetric inequality to uniformly convex Banach spaces, Compositio Math., 62 (1987), 263–282.
  • R. Kannan, L. Lovász and M. Simonovits, Isoperimetric problems for convex bodies and a localization lemma, Discrete Comput. Geom., 13 (1995), 541–559.
  • L. Kennard and W. Wylie, Positive weighted sectional curvature, Indiana Univ. Math J., 66 (2017), 419–462.
  • C. Ketterer, Cones over metric measure spaces and the maximal diameter theorem, J. Math. Pures Appl. (9), 103 (2015), 1228–1275.
  • B. Klartag, Needle decompositions in Riemannian geometry, Mem. Amer. Math. Soc., 249 (2017), no. 1180.
  • A. V. Kolesnikov and E. Milman, Brascamp–Lieb-type inequalities on weighted Riemannian manifolds with boundary, J. Geom. Anal., 27 (2017), 1680–1702.
  • K. Kuratowski and C. Ryll-Nardzewski, A general theorem on selectors, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 13 (1965), 397–403.
  • P. Lévy, Leçons d'analyse fonctionnelle, Gauthier-Villars, Paris, 1922.
  • P. Lévy, Problèmes concrets d'analyse fonctionnelle, Avec un complément sur les fonctionnelles analytiques par F. Pellegrino (French), 2d ed., Gauthier-Villars, Paris, 1951.
  • J. Lott, Some geometric properties of the Bakry–Émery–Ricci tensor, Comment. Math. Helv., 78 (2003), 865–883.
  • J. Lott and C. Villani, Weak curvature conditions and functional inequalities, J. Funct. Anal., 245 (2007), 311–333.
  • J. Lott and C. Villani, Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. (2), 169 (2009), 903–991.
  • L. Lovász and M. Simonovits, Random walks in a convex body and an improved volume algorithm, Random Structures Algorithms, 4 (1993), 359–412.
  • R. J. McCann, Polar factorization of maps on Riemannian manifolds, Geom. Funct. Anal., 11 (2001), 589–608.
  • E. Milman, Sharp isoperimetric inequalities and model spaces for curvature-dimension-diameter condition, J. Eur. Math. Soc. (JEMS), 17 (2015), 1041–1078.
  • E. Milman, Beyond traditional curvature-dimension I: new model spaces for isoperimetric and concentration inequalities in negative dimension, Trans. Amer. Math. Soc., 369 (2017), 3605–3637.
  • E. Milman, Harmonic measures on the sphere via curvature-dimension, Ann. Fac. Sci. Toulouse Math. (6), 26 (2017), 437–449.
  • E. Milman and L. Rotem, Complemented Brunn–Minkowski inequalities and isoperimetry for homogeneous and non-homogeneous measures, Adv. Math., 262 (2014), 867–908.
  • F. Morgan, Geometric measure theory, A beginner's guide, Fourth edition, Elsevier/Academic Press, Amsterdam, 2009.
  • S. Ohta, On the measure contraction property of metric measure spaces, Comment. Math. Helv., 82 (2007), 805–828.
  • S. Ohta, Products, cones, and suspensions of spaces with the measure contraction property, J. Lond. Math. Soc. (2), 76 (2007), 225–236.
  • S. Ohta, Finsler interpolation inequalities, Calc. Var. Partial Differential Equations, 36 (2009), 211–249.
  • S. Ohta, Optimal transport and Ricci curvature in Finsler geometry, Probabilistic approach to geometry, 323–342, Adv. Stud. Pure Math., 57, Math. Soc. Japan, Tokyo, 2010.
  • S. Ohta, Vanishing S-curvature of Randers spaces, Differential Geom. Appl., 29 (2011), 174–178.
  • S. Ohta, Ricci curvature, entropy, and optimal transport, Optimal transportation, 145–199, London Math. Soc. Lecture Note Ser., 413, Cambridge Univ. Press, Cambridge, 2014.
  • S. Ohta, Splitting theorems for Finsler manifolds of nonnegative Ricci curvature, J. Reine Angew. Math., 700 (2015), 155–174.
  • S. Ohta, $(K,N)$-convexity and the curvature-dimension condition for negative $N$, J. Geom. Anal., 26 (2016), 2067–2096.
  • S. Ohta, A semigroup approach to Finsler geometry: Bakry–Ledoux's isoperimetric inequality, preprint (2016), arXiv:1602.00390.
  • S. Ohta, Some functional inequalities on non-reversible Finsler manifolds, Proc. Indian Acad. Sci. Math. Sci., 127 (2017), 833–855.
  • S. Ohta, Nonlinear geometric analysis on Finsler manifolds, Eur. J. Math., 3 (2017), 916–952.
  • S. Ohta and K.-T. Sturm, Heat flow on Finsler manifolds, Comm. Pure Appl. Math., 62 (2009), 1386–1433.
  • S. Ohta and K.-T. Sturm, Bochner–Weitzenböck formula and Li–Yau estimates on Finsler manifolds, Adv. Math., 252 (2014), 429–448.
  • S. Ohta and A. Takatsu, Displacement convexity of generalized relative entropies, Adv. Math., 228 (2011), 1742–1787.
  • S. Ohta and A. Takatsu, Displacement convexity of generalized relative entropies, II, Comm. Anal. Geom., 21 (2013), 687–785.
  • L. E. Payne and H. F. Weinberger, An optimal Poincaré inequality for convex domains, Arch. Rational Mech. Anal., 5 (1960), 286–292.
  • Z. Qian, Estimates for weighted volumes and applications, Quart. J. Math. Oxford Ser. (2), 48 (1997), 235–242.
  • M.-K. von Renesse and K.-T. Sturm, Transport inequalities, gradient estimates, entropy and Ricci curvature, Comm. Pure Appl. Math., 58 (2005), 923–940.
  • Z. Shen, Lectures on Finsler geometry, World Scientific Publishing Co., Singapore, 2001.
  • K.-T. Sturm, On the geometry of metric measure spaces, I, Acta Math., 196 (2006), 65–131.
  • K.-T. Sturm, On the geometry of metric measure spaces, II, Acta Math., 196 (2006), 133–177.
  • C. Villani, Topics in optimal transportation, American Mathematical Society, Providence, RI, 2003.
  • C. Villani, Optimal transport, old and new, Springer-Verlag, Berlin, 2009.
  • W. Wylie, Sectional curvature for Riemannian manifolds with density, Geom. Dedicata, 178 (2015), 151–169.
  • W. Wylie, Some curvature pinching results for manifolds with density, Proc. Amer. Math. Soc., 144 (2016), 823–836.
  • W. Wylie, A warped product version of the Cheeger–Gromoll splitting theorem, Trans. Amer. Math. Soc., 369 (2017), 6661–6681.