Journal of the Mathematical Society of Japan

Spacelike Dupin hypersurfaces in Lorentzian space forms

Tongzhu LI and Changxiong NIE

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


Similar to the definition in Riemannian space forms, we define the spacelike Dupin hypersurface in Lorentzian space forms. As conformal invariant objects, spacelike Dupin hypersurfaces are studied in this paper using the framework of the conformal geometry of spacelike hypersurfaces. Further we classify the spacelike Dupin hypersurfaces with constant Möbius curvatures, which are also called conformal isoparametric hypersurface.

Article information

J. Math. Soc. Japan, Volume 70, Number 2 (2018), 463-480.

First available in Project Euclid: 18 April 2018

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 53A30: Conformal differential geometry 53B25: Local submanifolds [See also 53C40]

Dupin hypersurface principal curvatures Möbius curvatures conformal isoparametric hypersurface


LI, Tongzhu; NIE, Changxiong. Spacelike Dupin hypersurfaces in Lorentzian space forms. J. Math. Soc. Japan 70 (2018), no. 2, 463--480. doi:10.2969/jmsj/07027573.

Export citation


  • M. Cahen and Y. Kerbrat, Domaines symmétriques des quadriques projectives, J. Math. Pures Appl., 62 (1983), 327–348.
  • T. Cecil, Q. S. Chi and G. Jensen, Dupin hypersurfaces with four principal curvatures, II, Geom. Dedicata, 128 (2007), 55–95.
  • T. Cecil and G. Jensen, Dupin hypersurfaces with three principal curvatures, Invent. Math., 132 (1998), 121–178.
  • T. Cecil and G. Jensen, Dupin hypersurfaces with four principal curvatures, Geom. Dedicata, 79 (2000), 1–49.
  • Z. Li and X. Xie, Spacelike isoparametric hypersurfaces in Lorentzian space form, Front. Math. China, 1 (2006), 130–137.
  • K. Nomizu, On isoparametric hypersurfaces in the Lorentzian space forms, Japan. J. Math., 7 (1981), 217–226.
  • M. A. Magid, Lorentzian isoparametric hypersurface, Pacific J. Math., 118 (1985), 165–197.
  • R. Miyaoka, Compact Dupin hypersurfaces with three principal curvatures, Math. Z., 187 (1984), 433–452.
  • R. Miyaoka, Dupin hypersurfaces and a Lie invariant, Kodai Math. J., 12 (1989), 228–256.
  • R. Miyaoka, Dupin hypersurfaces with six principal curvatures, Kodai Math. J., 12 (1989), 308–315.
  • C. X. Nie, T. Z. Li, Y. J. He, et al., Conformal isoparametric hypersurfaces with two distinct conformal principal curvatures in conformal space, Sci. China Ser. A, 53 (2010), 953–965.
  • B. O'Neil, Semi-Riemannian Geometry, Academic Press, New York, 1983.
  • U. Pinkall, Dupinsche Hyperflachen in $E^4$, Manuscripta Math., 51 (1985), 89–119.
  • U. Pinkall, Dupin hypersurfaces, Math. Ann., 270 (1985), 427–440.
  • C. P. Wang, Möbius geometry of submanifolds in $\mathbb{S}^n$, Manuscripta Math., 96 (1998), 517–534.
  • L. Xiao, Lorentzian isoparametric hypersurfaces in $\mathbb{H}^{n+1}_1$, Pacific J. Math., 189 (1999), 377–397.