Journal of the Mathematical Society of Japan

A characterization of regular points by Ohsawa–Takegoshi extension theorem

Qi'an GUAN and Zhenqian LI

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

In this article, we present that the germ of a complex analytic set at the origin in $\mathbb{C}^n$ is regular if and only if the related Ohsawa–Takegoshi extension theorem holds. We also obtain a necessary condition of the $L^2$ extension of bounded holomorphic sections from singular analytic sets.

Article information

Source
J. Math. Soc. Japan, Volume 70, Number 1 (2018), 403-408.

Dates
First available in Project Euclid: 26 January 2018

Permanent link to this document
https://projecteuclid.org/euclid.jmsj/1516957233

Digital Object Identifier
doi:10.2969/jmsj/07017560

Mathematical Reviews number (MathSciNet)
MR3750282

Zentralblatt MATH identifier
06859858

Subjects
Primary: 32C30: Integration on analytic sets and spaces, currents {For local theory, see 32A25 or 32A27} 32C35: Analytic sheaves and cohomology groups [See also 14Fxx, 18F20, 55N30] 32U05: Plurisubharmonic functions and generalizations [See also 31C10]

Keywords
Ohsawa–Takegoshi extension theorem plurisubharmonic function integral closure of ideals

Citation

GUAN, Qi'an; LI, Zhenqian. A characterization of regular points by Ohsawa–Takegoshi extension theorem. J. Math. Soc. Japan 70 (2018), no. 1, 403--408. doi:10.2969/jmsj/07017560. https://projecteuclid.org/euclid.jmsj/1516957233


Export citation

References

  • E. M. Chirka, Complex Analytic Sets, Translated from the Russian by R. A. M. Hoksbergen, \doihref10.1007/978-94-009-2366-9Mathematics and its Applications (Soviet Series), 46, Kluwer Academic Publishers Group, Dordrecht, 1989.
  • J.-P. Demailly, Complex Analytic and Differential Geometry, http://www-fourier.ujf-grenoble.fr/ demailly/documents.html, Institut Fourier (2012).
  • K. Diederich and E. Mazzilli, A remark on the theorem of Ohsawa–Takegoshi, \doihref10.1017/S0027763000007376Nagoya Math. J., 158 (2000), 185–189.
  • H. Grauert and R. Remmert, Coherent analytic sheaves, \doihref10.1007/978-3-642-69582-7Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 265, Springer-Verlag, Berlin, 1984, xviii+249 pp.
  • Q. A. Guan and X. Y. Zhou, Strong openness conjecture for plurisubharmonic functions, arXiv:1311.3781.
  • Q. A. Guan and X. Y. Zhou, A proof of Demailly's strong openness conjecture, \doihref10.4007/annals.2015.182.2.5Ann. of Math., 182 (2015), 605–616.
  • M. Lejeune-Jalabert and B. Teissier, Clôture intégrale des idéaux et équisingularité, \doihref10.5802/afst.1203 Ann. Fac. Sci. Toulouse Math., 17 (2008), 781–859.
  • T. Ohsawa, A precise $L^2$ division theorem, \doihref10.1007/978-3-642-56202-0_13Complex Geometry (Göttingen, 2000), 185–191, Springer, Berlin, 2002.
  • T. Ohsawa, On a curvature condition that implies a cohomology injectivity theorem of Kollár–Skoda type, \doihref10.2977/prims/1145475223Publ. Res. Inst. Math. Sci., 41 (2005), 565–577.
  • T. Ohsawa and K. Takegoshi, On the extension of $L^2$ holomorphic functions, \doihref10.1007/BF01166457Math. Z., 195 (1987), 197–204.