Journal of the Mathematical Society of Japan

Magidor cardinals

Shimon GARTI and Yair HAYUT

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We define Magidor cardinals as Jónsson cardinals upon replacing colorings of finite subsets by colorings of $\aleph_0$-bounded subsets. Unlike Jónsson cardinals which appear at some low level of large cardinals, we prove the consistency of having quite large cardinals along with the fact that no Magidor cardinal exists.

Article information

J. Math. Soc. Japan, Volume 70, Number 1 (2018), 1-23.

First available in Project Euclid: 26 January 2018

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 03E55: Large cardinals

large cardinals square and quilshon principles Jónsson cardinals Magidor cardinals


GARTI, Shimon; HAYUT, Yair. Magidor cardinals. J. Math. Soc. Japan 70 (2018), no. 1, 1--23. doi:10.2969/jmsj/07017327.

Export citation


  • J. Cummings, Iterated forcing and elementary embeddings, \doihref10.1007/978-1-4020-5764-9_13Handbook of set theory, 1, 2, 3, Springer, Dordrecht, 2010, pp. 775–883.
  • J. Cummings and E. Schimmerling, Indexed squares, \doihref10.1007/BF02785851Israel J. Math., 131 (2002), 61–99.
  • K. J. Devlin, Some weak versions of large cardinal axioms, \doihref10.1016/0003-4843(73)90010-7Ann. Math. Logic, 5 (1972–1973), 291–325.
  • P. Erdős and A. Hajnal, On a problem of B. Jónsson, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 14 (1966), 19–23.
  • H. Gaifman, Elementary embeddings of models of set-theory and certain subtheories, Axiomatic set theory (Proc. Sympos. Pure Math., XIII, Part II, Univ. California, Los Angeles, Calif., 1967), Amer. Math. Soc., Providence R.I., 1974, pp. 33–101.
  • S. Garti, Y. Hayut and S. Shelah, On the verge of inconsistency: Magidor cardinals and Magidor filters, \doihref10.1007/s11856-017-1510-2Israel J. Math., 220 (2017), 89–102.
  • T. Jech, Set theory, Springer Monogr. Math., Springer-Verlag, Berlin, 2003, The third millennium edition, revised and expanded.
  • R. B. Jensen, The fine structure of the constructible hierarchy, \doihref10.1016/0003-4843(72)90001-0Ann. Math. Logic, 4 (1972), 229–308; erratum, ibid. 4 (1972), 443, With a section by J. Silver.
  • A. Kanamori, The higher infinite, second ed., Springer Monogr. Math., Springer-Verlag, Berlin, 2003, Large cardinals in set theory from their beginnings.
  • E. M. Kleinberg, Rowbottom cardinals and Jonsson cardinals are almost the same, \doihref10.2307/2273038J. Symbolic Logic, 38 (1973), 423–427.
  • E. M. Kleinberg, ${\rm AD}\vdash $ “the $\aleph _{n}$ are Jonsson cardinals and $\aleph _{\omega }$ is a Rowbottom cardinal”, \doihref10.1016/S0003-4843(77)80002-8Ann. Math. Logic, 12 (1977), 229–248.
  • P. Koellner and W. H. Woodin, Large cardinals from determinacy, \doihref10.1007/978-1-4020-5764-9_24Handbook of set theory. 1, 2, 3, Springer, Dordrecht, 2010, pp. 1951–2119.
  • K. Kunen, Elementary embeddings and infinitary combinatorics, \doihref10.2307/2269948J. Symbolic Logic, 36 (1971), 407–413.
  • R. Laver, On very large cardinals, Paul Erdős and his mathematics, II, Budapest, 1999, Bolyai Soc. Math. Stud., 11, János Bolyai Math. Soc., Budapest, 2002, pp. 453–469.
  • R. Laver, Making the supercompactness of $\kappa $ indestructible under $\kappa $-directed closed forcing, \doihref10.1007/BF02761175Israel J. Math., 29 (1978), 385–388.
  • M. Magidor, Personal communication, 2015.
  • K. L. Prikry, Changing measurable into accessible cardinals, Dissertationes Math. Rozprawy Mat., 68 (1970), 55.
  • M. Shioya, Infinitary Jónsson functions and elementary embeddings, \doihref10.1007/BF01352930Arch. Math. Logic, 33 (1994), 81–86.
  • J. Tryba, A few remarks on Rowbottom cardinals, \doihref10.1007/BF02761361Israel J. Math., 40 (1981), 193–196.