Journal of the Mathematical Society of Japan
- J. Math. Soc. Japan
- Volume 69, Number 4 (2017), 1475-1484.
Self-dual Wulff shapes and spherical convex bodies of constant width ${\pi}/{2}$
Huhe HAN and Takashi NISHIMURA
Abstract
For any Wulff shape, its dual Wulff shape is naturally defined. A self-dual Wulff shape is a Wulff shape equaling its dual Wulff shape exactly. In this paper, it is shown that a Wulff shape is self-dual if and only if the spherical convex body induced by it is of constant width ${\pi}/{2}$.
Article information
Source
J. Math. Soc. Japan, Volume 69, Number 4 (2017), 1475-1484.
Dates
First available in Project Euclid: 25 October 2017
Permanent link to this document
https://projecteuclid.org/euclid.jmsj/1508918565
Digital Object Identifier
doi:10.2969/jmsj/06941475
Mathematical Reviews number (MathSciNet)
MR3715812
Zentralblatt MATH identifier
06821648
Subjects
Primary: 52A55: Spherical and hyperbolic convexity
Keywords
Wulff shape dual Wulff shape self-dual Wulff shape spherical convex body width constant width Lune thickness diameter spherical polar set
Citation
HAN, Huhe; NISHIMURA, Takashi. Self-dual Wulff shapes and spherical convex bodies of constant width ${\pi}/{2}$. J. Math. Soc. Japan 69 (2017), no. 4, 1475--1484. doi:10.2969/jmsj/06941475. https://projecteuclid.org/euclid.jmsj/1508918565