Journal of the Mathematical Society of Japan

Cartan matrices and Brauer's $k(B)$-conjecture IV

Benjamin SAMBALE

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

In this note we give applications of recent results coming mostly from the third paper of this series. It is shown that the number of irreducible characters in a $p$-block of a finite group with abelian defect group $D$ is bounded by $|D|$ (Brauer's $k(B)$-conjecture) provided $D$ has no large elementary abelian direct summands. Moreover, we verify Brauer's $k(B)$-conjecture for all blocks with minimal non-abelian defect groups. This extends previous results by various authors.

Article information

Source
J. Math. Soc. Japan Volume 69, Number 2 (2017), 735-754.

Dates
First available in Project Euclid: 20 April 2017

Permanent link to this document
https://projecteuclid.org/euclid.jmsj/1492653645

Digital Object Identifier
doi:10.2969/jmsj/06920735

Subjects
Primary: 20C15: Ordinary representations and characters
Secondary: 20C20: Modular representations and characters

Keywords
blocks minimal non-abelian defect groups abelian defect groups Brauer's $k(B)$-conjecture

Citation

SAMBALE, Benjamin. Cartan matrices and Brauer's $k(B)$-conjecture IV. J. Math. Soc. Japan 69 (2017), no. 2, 735--754. doi:10.2969/jmsj/06920735. https://projecteuclid.org/euclid.jmsj/1492653645


Export citation

References

  • M. Aschbacher, R. Kessar and B. Oliver, Fusion systems in algebra and topology, London Math. Soc. Lecture Note Series, 391, Cambridge University Press, Cambridge, 2011.
  • M. Broué and L. Puig, A Frobenius theorem for blocks, Invent. Math., 56 (1980), 117–128.
  • C. W. Eaton, B. Külshammer and B. Sambale, $2$-Blocks with minimal nonabelian defect groups II, J. Group Theory, 15 (2012), 311–321.
  • W. Feit, The representation theory of finite groups, North-Holland Mathematical Library, 25, North-Holland Publishing Co., Amsterdam, 1982.
  • M. Fujii, On determinants of Cartan matrices of $p$-blocks, Proc. Japan Acad. Ser. A Math. Sci., 56 (1980), 401–403.
  • S. Gao and J. Zeng, On the number of ordinary irreducible characters in a $p$-block with a minimal nonabelian defect group, Comm. Algebra, 39 (2011), 3278–3297.
  • The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.7.8; 2015, (http://www.gap-system.org).
  • D. Gorenstein, Finite groups, Harper & Row Publishers, New York, 1968.
  • Z. Halasi and K. Podoski, Every coprime linear group admits a base of size two, Trans. Amer. Math. Soc., 368 (2016), 5857–5887.
  • S. Hendren, Extra special defect groups of order $p^3$ and exponent $p^2$, J. Algebra, 291 (2005), 457–491.
  • S. Hendren, Extra special defect groups of order $p^3$ and exponent $p$, J. Algebra, 313 (2007), 724–760.
  • B. Huppert, Endliche Gruppen. I, Grundlehren der Mathematischen Wissenschaften, 134, Springer-Verlag, Berlin, 1967.
  • T. M. Keller and Y. Yang, Abelian quotients and orbit sizes of finite groups, arXiv:1407.6436v1.
  • R. Kessar and M. Linckelmann, On perfect isometries for tame blocks, Bull. London Math. Soc., 34 (2002), 46–54.
  • R. Kessar and G. Malle, Quasi-isolated blocks and Brauer's height zero conjecture, Ann. of Math. (2), 178 (2013), 321–384.
  • Y. Kitaoka, Arithmetic of quadratic forms, Cambridge Tracts in Mathematics, 106, Cambridge University Press, Cambridge, 1993.
  • M. Kiyota, On $3$-blocks with an elementary abelian defect group of order $9$, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 31 (1984), 33–58.
  • H. Kurzweil and B. Stellmacher, The theory of finite groups, Universitext, Springer-Verlag, New York, 2004.
  • B. Külshammer and T. Okuyama, On centrally controlled blocks of finite groups, unpublished.
  • M. Linckelmann, Introduction to fusion systems, In: Group representation theory, 79–113, EPFL Press, Lausanne, 2007. Revised version: http://web.mat.bham.ac.uk/C.W.Parker/Fusion/fusion-intro.pdf.
  • L. J. Mordell, The representation of a definite quadratic form as a sum of two others, Ann. of Math. (2), 38 (1937), 751–757.
  • H. Nagao and Y. Tsushima, Representations of finite groups, Academic Press Inc., Boston, MA, 1989.
  • J. Neukirch, Algebraic number theory, Grundlehren der Mathematischen Wissenschaften, 322, Springer-Verlag, Berlin, 1999.
  • J. B. Olsson, On $2$-blocks with quaternion and quasidihedral defect groups, J. Algebra, 36 (1975), 212–241.
  • W. Plesken, Solving $XX^\textnormal{tr}=A$ over the integers, Linear Algebra Appl., 226/228 (1995), 331–344.
  • L. Puig and Y. Usami, Perfect isometries for blocks with abelian defect groups and cyclic inertial quotients of order $4$, J. Algebra, 172 (1995), 205–213.
  • G. R. Robinson, On the focal defect group of a block, characters of height zero, and lower defect group multiplicities, J. Algebra, 320 (2008), 2624–2628.
  • B. Sambale, $2$-Blocks with minimal nonabelian defect groups, J. Algebra, 337 (2011), 261–284.
  • B. Sambale, Cartan matrices and Brauer's $k(B)$-conjecture II, J. Algebra, 337 (2011), 345–362.
  • B. Sambale, Blocks of finite groups and their invariants, Springer Lecture Notes in Math., 2127, Springer-Verlag, Berlin, 2014.
  • B. Sambale, On the Brauer–Feit bound for abelian defect groups, Math. Z., 276 (2014), 785–797.
  • B. Sambale, Cartan matrices and Brauer's $k(B)$-conjecture III, Manuscripta Math., 146 (2015), 505–518.
  • H. Sasaki, The mod $p$ cohomology algebras of finite groups with metacyclic Sylow $p$-subgroups, J. Algebra, 192 (1997), 713–733.
  • M. Sawabe and A. Watanabe, On the principal blocks of finite groups with abelian Sylow $p$-subgroups, J. Algebra, 237 (2001), 719–734.
  • R. Stancu, Control of fusion in fusion systems, J. Algebra Appl., 5 (2006), 817–837.
  • D. A. Suprunenko, Matrix groups, Amer. Math. Soc., Providence, R.I., 1976.
  • A. Turull, Fixed point free action with regular orbits, J. Reine Angew. Math., 371 (1986), 67–91.
  • Y. Usami, On $p$-blocks with abelian defect groups and inertial index $2$ or $3$. I, J. Algebra, 119 (1988), 123–146.
  • A. Watanabe, Note on a $p$-block of a finite group with abelian defect group, Osaka J. Math., 26 (1989), 829–836.
  • A. Watanabe, Notes on $p$-blocks of characters of finite groups, J. Algebra, 136 (1991), 109–116.
  • A. Watanabe, On perfect isometries for blocks with abelian defect groups and cyclic hyperfocal subgroups, Kumamoto J. Math., 18 (2005), 85–92.
  • A. Watanabe, Appendix on blocks with elementary abelian defect group of order 9, In: Representation Theory of Finite Groups and Algebras, and Related Topics (Kyoto, 2008), 9–17, Kyoto University Research Institute for Mathematical Sciences, Kyoto, 2010.
  • A. Watanabe, The number of irreducible Brauer characters in a $p$-block of a finite group with cyclic hyperfocal subgroup, J. Algebra, 416 (2014), 167–183.
  • S. Yang and S. Gao, On the control of fusion in the local category for the $p$-block with a minimal nonabelian defect group, Sci. China Math., 54 (2011), 325–340.