Journal of the Mathematical Society of Japan

On divergence of expectations of the Feynman–Kac type with singular potentials


Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


Motivated by the work of Baras–Goldstein (1984), we discuss when expectations of the Feynman–Kac type with singular potentials are divergent. Underlying processes are Brownian motion and $\alpha$-stable process. In connection with the work of Ishige–Ishiwata (2012) concerned with the heat equation in the half-space with a singular potential on the boundary, we also discuss the same problem in the half-space for the case of Brownian motion.

Article information

J. Math. Soc. Japan Volume 68, Number 3 (2016), 1271-1296.

First available in Project Euclid: 19 July 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60J65: Brownian motion [See also 58J65]
Secondary: 60G52: Stable processes 35K05: Heat equation 60J55: Local time and additive functionals

Feynman–Kac formula heat equation singular potential fractional Laplacian


HARIYA, Yuu; HASEGAWA, Kaname. On divergence of expectations of the Feynman–Kac type with singular potentials. J. Math. Soc. Japan 68 (2016), no. 3, 1271--1296. doi:10.2969/jmsj/06831271.

Export citation


  • D. Applebaum, Lévy Processes and Stochastic Calculus, 2nd ed., Cambridge University Press, Cambridge, 2009.
  • P. Baras and J. A. Goldstein, The heat equation with a singular potential, Trans. Amer. Math. Soc., 284 (1984), 121–139.
  • A. N. Borodin and P. Salminen, Handbook of Brownian Motion–-Facts and Formulae, 2nd ed., Birkhäuser, Basel, 2002.
  • R. Carmona, W. C. Masters and B. Simon, Relativistic Schrödinger operators: asymptotic behavior of the eigenfunctions, J. Funct. Anal., 91 (1990), 117–142.
  • LI. G. Chambers, An upper bound for the first zero of Bessel functions, Math. Comp., 38 (1982), 589–591.
  • K. L. Chung and Z. Zhao, From Brownian Motion to Schrödinger's Equation, Springer, Berlin, 1995.
  • J. Dávila, L. Dupaigne and M. Motenegro, The extremal solution of a boundary reaction problem, Commun. Pure Appl. Anal., 7 (2008), 795–817.
  • R. L. Frank, E. H. Lieb and R. Seiringer, Hardy–Lieb–Thirring inequalities for fractional Schrödinger operators, J. Amer. Math. Soc., 21 (2008), 925–950.
  • I. W. Herbst, Spectral theory of the operator $(p^2+m^2)^{1/2}-Ze^2/r$, Comm. Math. Phys., 53 (1977), 285–294.
  • K. Ishige and M. Ishiwata, Heat equation with a singular potential on the boundary and the Kato inequality, J. Anal. Math., 118 (2012), 161–176.
  • I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, 2nd ed., Springer, New York, 1991.
  • J. T. Kent, Eigenvalue expansions for diffusion hitting times, Z. Wahrsch. Verw. Gebiete, 52 (1980), 309–319.
  • O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural$'$ceva, Linear and Quasi-linear Equations of Parabolic Type, American Mathematical Society, Providence, R. I., 1968.
  • N. N. Lebedev, Special Functions and their Applications, Dover, New York, 1972.
  • L. Lorch, Some inequalities for the first positive zeros of Bessel functions, SIAM J. Math. Anal., 24 (1993), 814–823.
  • R. Mansuy and M. Yor, Random Times and Enlargements of Filtrations in a Brownian Setting, Lecture Notes in Math., 1873, Springer, Berlin, 2006.
  • C. K. Qu and R. Wong, “Best possible” upper and lower bounds for the zeros of the Bessel function $J_{\nu}(x)$, Trans. Amer. Math. Soc., 351 (1999), 2833–2859.
  • D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, 3rd ed., Springer, Berlin, 1999.
  • G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed., Cambridge University Press, Cambridge, 1944.
  • M. Yor, Loi de l'indice du lacet Brownien, et distribution de Hartman–Watson, Z. Wahrsch. Verw. Gebiete, 53 (1980), 71–95.