Journal of the Mathematical Society of Japan

On framed simple Lie groups


Full-text: Open access


For a compact simple Lie group $G$, we show that the element $[G, \mathcal{L}] \in \pi^S_*(S^0)$ represented by the pair $(G, \mathcal{L})$ is zero, where $\mathcal{L}$ denotes the left invariant framing of $G$. The proof relies on the method of E. Ossa [Topology, 21 (1982), 315–323].

Article information

J. Math. Soc. Japan, Volume 68, Number 3 (2016), 1219-1229.

First available in Project Euclid: 19 July 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 57R15: Specialized structures on manifolds (spin manifolds, framed manifolds, etc.)
Secondary: 22E46: Semisimple Lie groups and their representations 19L20: $J$-homomorphism, Adams operations [See also 55Q50]

framed manifolds Lie groups Adams conjecture


MINAMI, Haruo. On framed simple Lie groups. J. Math. Soc. Japan 68 (2016), no. 3, 1219--1229. doi:10.2969/jmsj/06831219.

Export citation


  • J. F. Adams, Lectures on Exceptional Lie Groups, Chicago Lectures in Math., University of Chicago Press, Chicago, 1996.
  • M. F. Atiyah, Power operations in $K$-theory, Quart. J. Math. Oxford Ser. (2), 17 (1966), 165–193.
  • M. F. Atiyah and L. Smith, Compact Lie groups and the stable homotopy of spheres, Topology, 13 (1974), 135–142.
  • J. C. Becker and R. E. Schultz, Fixed point indices and left invariant framings, In Geometric Applications of Homotopy Theory I, Proc. Evanston, 1977, Springer Lecture Notes, 657, 1–31.
  • H. H. Gershenson, A problem in compact Lie groups and cobordism, Pac. J. of Math., 51 (1974), 121–129.
  • K. Knapp, Rank and Adams filtration of a Lie group, Topology, 17 (1978), 41–52.
  • E. Ossa, Lie groups as framed manifolds, Topology, 21 (1982), 315–323.
  • H. Sati, M-Theory with Framed Corners and Tertiary Index Invariants, SIGMA, 10 (2014), 024 arXiv:1203.4179 [hep-th].
  • H. U. Schön, Lie-Gruppen in der Novikov-Spektralsequenz, Ph. D. Dissertation, Univ. Wuppertal, 1983.
  • B. Steer, Orbits and the homotopy class of a compactification of a classical map, Topology, 15 (1976), 383–393.
  • H. Toda, Composition Methods in Homotopy Groups of Spheres, Ann. of Math. Studies, 49, Princeton University Press, 1962.
  • R. M. W. Wood, Framing the exceptional Lie group $G_2$, Topology, 15 (1976), 303–320.