Journal of the Mathematical Society of Japan

Generalized commutators of multilinear Calderón–Zygmund type operators

Qingying XUE and Jingquan YAN

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Let $T$ be an $m$-linear Calderón–Zygmund operator with kernel $K$ and $T^*$ be the maximal operator of $T$. Let $S$ be a finite subset of $Z^+\times \{1,\dots,m\}$ and denote $d\vec{y}=dy_1\cdots dy_m$. Define the commutator $T_{\vec{b},S}$ of $T$, and $T^*_{\vec{b},S}$ of $T^*$ by $T_{\vec{b},S}(\vec{f})(x)= \int_{\mathbb{R}^{nm}}\prod_{(i,j)\in S}(b_i(x)-b_i(y_j)) K(x,y_{1},\dots,y_{m}) \prod_{j=1}^mf_j(y_j)d\vec{y}$ and $T^*_{\vec{b},S}(\vec{f})(x)= \sup_{\delta>0}\big|\int_{{\sum_{j=1}^m|x-y_j|^2>\delta^2}} \prod_{(i,j)\in S}(b_i(x)-b_i(y_j))K(x,y_{1},\dots,y_{m}) \prod_{j=1}^mf_{j}(y_j)d\vec{y}\big|$. These commutators are reflexible enough to generalize several kinds of commutators which already existed. We obtain the weighted strong and endpoint estimates for $T_{\vec{b},S}$ and $T^*_{\vec{b},S}$ with multiple weights. These results are based on an estimate of the Fefferman–Stein sharp maximal function of the commutators, which is proved in a pretty much more organized way than some known proofs. Similar results for the commutators of vector-valued multilinear Calderón–Zygmund operators are also given.

Article information

Source
J. Math. Soc. Japan Volume 68, Number 3 (2016), 1161-1188.

Dates
First available in Project Euclid: 19 July 2016

Permanent link to this document
https://projecteuclid.org/euclid.jmsj/1468956164

Digital Object Identifier
doi:10.2969/jmsj/06831161

Mathematical Reviews number (MathSciNet)
MR3523543

Zentralblatt MATH identifier
06642409

Subjects
Primary: 42B20: Singular and oscillatory integrals (Calderón-Zygmund, etc.)
Secondary: 42B25: Maximal functions, Littlewood-Paley theory

Keywords
multilinear Calderón–Zygmund operators Commutators Multiple weights

Citation

XUE, Qingying; YAN, Jingquan. Generalized commutators of multilinear Calderón–Zygmund type operators. J. Math. Soc. Japan 68 (2016), no. 3, 1161--1188. doi:10.2969/jmsj/06831161. https://projecteuclid.org/euclid.jmsj/1468956164.


Export citation

References

  • J. Alvarez, R. J. Bagby, D. S. Kurtz and C. Pérez, Weighted estimates for commutators of linear operators, Studia Math., 104 (1993), 195–209.
  • J. Alvarez and C. Pérez, Estimates with $A_{\infty}$ weights for various singular integral operators, Boll. Un. Mat. Ital. A, 8 (7) (1994), 123–133.
  • R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functionsand singular integrals, Studia Math., 51 (1974), 241–250.
  • R. R. Coifman and Y. Meyer, On commutators of singular integrals and bilinear singular integrals, Trans. Amer. Math. Soc., 212 (1975), 315–331.
  • R. R. Coifman and Y. Meyer, Commutateurs d'intégrales singulières et opérateurs multilinéaires, Ann. Inst. Fourier, Grenoble., 28 (1978), 177–202.
  • R. R. Coifman and Y. Meyer, Au-delà des opérateurs pseudo-différentiels, Asterisque, 57, Société Mathématique de France, Paris, 1978.
  • R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math., 103 (1976), 611–635.
  • D. Cruz-Uribe, J. M. Martell and C. Pérez, Extrapolation from $A_{\infty}$ weights and applications, J. Funct. Anal., 213 (2004), 412–439.
  • L. Grafakos, L. Liu, C. Pérez and R. H. Torres, The multilinear strong maximal function, J. Geom. Anal., 21 (2011), 118–149.
  • L. Grafakos and J. Martell, Extrapolation of Weighted Norm Inequalities for Multivariable Operators and Applications, J. Geom. Anal., 14 (2004), 19–46.
  • L. Grafakos and R. H. Torres, Multilinear Calderón–Zygmund theory, Adv. Math., 165 (2002), 124–164.
  • T. Hytonen and C. Pérez, Sharp weighted bounds involving $A_{\infty}$, Analysis and P.D.E., 6 (2013), 777–818.
  • S. Janson, Mean oscillation and commutators of singular integral operators, Ark. Mat., 16 (1978), 263–270.
  • C. E. Kenig and E. M. Stein, Multilinear estimates and fractional integration, Math. Res. Lett., 6 (1999), 1–15.
  • A. K. Lerner, S. Ombrosi, C. Pérez, R. H. Torres and R. Trujillo-González, New maximal functions and multiple weights for the multilinear Calderón–Zygmund theory, Adv. Math., 220 (2009), 1222–1264.
  • J. Mateu, J. Orobitg, C. Pérez and J. Verdera, New estimates for the maximal singular integral, Int. Math. Res. Not. IMRN, (2010) Vol.,2010, 3658–3722.
  • A. Micheal Alphonse, An end point estimate for maximal commutators, J. Fourier Anal. Appl., 6 (2000), 449–456.
  • B. Moukenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Am. Math. Soc., 165 (1972), 207–226.
  • C. Ortiz-Caraballo, Quadratic $A^1$ bounds for commutators of singular integrals with BMO functions, Indiana Univ. Math. J., 60 (2011), 2107–2130.
  • C. Ortiz-Caraballo, C. Pérez and E. Rela, Improving bounds for singular operator via Sharp Reverse Hólder Inequality for $A_{\infty}$, Advances in Harmonic Analysis and Operator Theory. Birkhäuser OT series, 229 (2013), 303–321.
  • C. Pérez, End point estimates for commutators of singular integral operators, J. Funct. Anal., 128 (1995), 163–185.
  • C. Pérez, Sharp estimates for commutators of singular integrals via iterations of the Hardy-Littlewood maximal function, J. Fourier Anal. Appl., 3 (1997), 743–756.
  • C. Pérez, A course on Singular Integrals and weights, Adv. Courses Math., CRM Barcelona, Birkhäuser editors.
  • C. Pérez and G. Pradolini, Sharp weighted endpoint estimates for commutators of singular integral operators, Michigan Math. J., 49 (2001), 23–37.
  • C. Pérez, G. Pradolini, R. H. Torres and R. Trujillo-González, End-point estimates for iterated commutators of multilinears ingular integrals, Bull. Lond. Math. Soc., 46 (2014), 26–42.
  • C. Pérez and R. H. Torres, Sharp maximal function estimates for multilinear singular integrals, Harmonic Analysis at Mount Holyoke, Contemp. Math., 320 (2003), 323–331.
  • C. Pérez and R. Trujillo-González, Sharp weighted estimates for multilinear commutators, J. London Math. Soc., 65 (2002), 672–692.
  • C. Pérez and R. Trujillo-González, Sharp weighted estimates for vector-valued singular integral operators and commutators, Tohoku Math. J. (2), 55 (2003), 109–129.
  • M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Math., 146, Marcel Dekker, New York, 1991.
  • J. L. Rubio de Francia, Factorization theory and $A_p$ weights, Amer. J. Math., 106 (1984), 533–547.
  • J. L. Rubio de Francia, F. J. Ruiz and J. L. Torrea, Calderón–Zygmund theory for operator-valued kernels, Adv. Math., 62 (1986), 7–48.
  • C. Segovia and J. L. Torrea, Weighted inequalities for commutators of fractional and singular integrals, Publ. Mat., 35 (1991), 209–235.
  • Z. Si and Q. Xue, weighted estimats for commutators of vector-valued maximal multilinear operators, Nonlinear Analysis Series A: TMA, 96 (2014), 96–108.
  • L. Tang, Weighted estimates for vector-valued commutators of multilinear operators, Proc. Roy. Soc. Edinburgh Section A, 138 (2008), 897–922.
  • J. M. Wilson, Weighted inequalities for the dyadic square function without dyadic $A_{\infty}$, Duke Math. J., 55 (1987), 19–50.
  • Q. Xue, Weighted estimates for the iterated commutators of multilinear maximal and fractonal type operators, Studia. Math., 217 (2013), 97–122
  • P. Zhang, Weighted estimates for maximal multilinear commutators, Math. Nachr., 279 (2006), 445–462.