Journal of the Mathematical Society of Japan

Kiselman's principle, the Dirichlet problem for the Monge–Ampère equation, and rooftop obstacle problems

Tamás DARVAS and Yanir A. RUBINSTEIN

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

First, we obtain a new formula for Bremermann type upper envelopes, that arise frequently in convex analysis and pluripotential theory, in terms of the Legendre transform of the convex- or plurisubharmonic-envelope of the boundary data. This yields a new relation between solutions of the Dirichlet problem for the homogeneous real and complex Monge–Ampère equations and Kiselman's minimum principle. More generally, it establishes partial regularity for a Bremermann envelope whether or not it solves the Monge–Ampère equation. Second, we prove the second order regularity of the solution of the free-boundary problem for the Laplace equation with a rooftop obstacle, based on a new a priori estimate on the size of balls that lie above the non-contact set. As an application, we prove that convex- and plurisubharmonic-envelopes of rooftop obstacles have bounded second derivatives.

Article information

Source
J. Math. Soc. Japan, Volume 68, Number 2 (2016), 773-796.

Dates
First available in Project Euclid: 15 April 2016

Permanent link to this document
https://projecteuclid.org/euclid.jmsj/1460727380

Digital Object Identifier
doi:10.2969/jmsj/06820773

Mathematical Reviews number (MathSciNet)
MR3488145

Zentralblatt MATH identifier
1353.32039

Subjects
Primary: 53C55: Hermitian and Kählerian manifolds [See also 32Cxx]
Secondary: 32W20: Complex Monge-Ampère operators

Keywords
Kiselman Monge–Ampère Kähler metrics

Citation

DARVAS, Tamás; RUBINSTEIN, Yanir A. Kiselman's principle, the Dirichlet problem for the Monge–Ampère equation, and rooftop obstacle problems. J. Math. Soc. Japan 68 (2016), no. 2, 773--796. doi:10.2969/jmsj/06820773. https://projecteuclid.org/euclid.jmsj/1460727380


Export citation

References

  • E. Bedford and B. A. Taylor, The Dirichlet problem for a complex Monge–Ampère equation, Invent. Math., 37 (1976), 1–44.
  • J. Benoist and J.-B. Hiriart-Urruty, What is the subdifferential of the closed convex hull of a function?, SIAM J. Math. Anal., 27 (1996), 1661–1679.
  • R. Berman, Bergman kernels and equilibrium measures for line bundles over projective manifolds, Amer. J. Math., 131 (2009), 1485–1524.
  • R. J. Berman, On the optimal regularity of weak geodesics in the space of metrics on a polarized manifold, arXiv:1405.6482.
  • R. Berman, From Monge–Ampère equations to envelopes and geodesic rays in the zero temperature limit, preprint, arXiv:1307.3008.
  • R. Berman and J. P. Demailly, Regularity of plurisubharmonic upper envelopes in big cohomology classes, In: Perspectives in analysis, geometry and topology, Progr. Math., 296, Birkhäuser/Springer, 2012, 39–66.
  • B. Berndtsson, A Brunn–Minkowski type inequality for Fano manifolds and some uniqueness theorems in Kähler geometry, Invent. Math., 200 (2015), 149–200.
  • Z. Błocki, A gradient estimate in the Calabi-Yau theorem, Math. Ann., 344 (2009), 317–327.
  • H.-J. Bremermann, On a generalized Dirichlet problem for plurisubharmonic functions and pseudo-convex domains, Characterization of Silov boundaries, Trans. Amer. Math. Soc., 91 (1959), 246–276.
  • L. A. Caffarelli, The obstacle problem, Accademia Nazionale dei Lincei, Scuola Normale Superiore, 1998.
  • L. A. Caffarelli and S. Salsa, A geometric approach to free boundary problems, Amer. Math. Soc., 2005.
  • T. Darvas, Envelopes and Geodesics in Spaces of Kähler Potentials, arXiv:1401.7318.
  • J. P. Demailly, Complex Analytic and Differential Geometry, http://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf
  • S. K. Donaldson, Symmetric spaces, Kähler geometry and Hamiltonian dynamics, In: Northern California Symplectic Geometry Seminar (eds. Ya. Eliashberg et al.), Amer. Math. Soc., 1999, pp.,13–33.
  • S. K. Donaldson, Nahm's equations and free-boundary problems, The many facets of geometry, 71–91, Oxford Univ. Press, Oxford, 2010.
  • W. Fenchel, On conjugate convex functions, Canad. J. Math., 1 (1949), 73–77.
  • A. Griewank and P. J. Rabier, On the smoothness of convex envelopes, Trans. Amer. Math. Soc., 322 (1990), 691–709.
  • V. Guedj (Ed.), Complex Monge–Ampère equations and geodesics in the space of Kähler metrics, Lecture Notes in Math., 2038, 2012.
  • W. He, On the space of Kähler potentials, Comm. Pure Appl. Math., 68 (2015), 332–343.
  • J.-B. Hiriart-Urruty and C. Lemaréchal, Convex analysis and minimization algorithms II, Springer, 1993.
  • T. Jeffres, R. Mazzeo and Y. A. Rubinstein, Kähler–Einstein metrics with edge singularities, (with an appendix by C. Li and Y. A. Rubinstein), preprint, arXiv:1105.5216.
  • B. Kirchheim and J. Kristensen, Differentiability of convex envelopes, C. R. Acad. Sci. Paris, Ser. I, 333 (2001), 725–728.
  • S. Kolodziej, The complex Monge–Ampère equation and pluripotential theory, Mem. Amer. Math. Soc., 178 (2005), no.,840.
  • C. O. Kiselman, The partial Legendre transformation for plurisubharmonic functions, Invent. Math., 49 (1978), 137–148.
  • C. O. Kiselman, Plurisubharmonic functions and their singularities, In: Complex potential theory (eds. P. M. Gauthier et al.), Kluwer, 1994, pp.,273–323.
  • T. Mabuchi, Some symplectic geometry on compact Kähler manifolds I, Osaka J. Math., 24 (1987), 227–252.
  • S. Mandelbrojt, Sur les fonctiones convexes, C. R. Acad. Sci. Paris, 209 (1939), 977–978.
  • A. Petrosyan and T. To, Optimal regularity in rooftop-like obstacle problem, Comm. Partial Differential Equations, 35 (2010), 1292–1325.
  • A. Petrosyan, H. Shahgholian and N. Uraltseva, Regularity of free boundaries in obstacle-type problems, Amer. Math. Soc., 2012.
  • R. T. Rockafellar, Convex analysis, Princeton University Press, 1970.
  • J. Ross and D. Witt-Nyström, Analytic test configurations and geodesic rays, J. Symplectic Geom., 12 (2014), 125–169.
  • J. Ross and D. Witt-Nyström, Envelopes of positive metrics with prescribed singularities, arXiv:1210.2220.
  • Y. A. Rubinstein, Some discretizations of geometric evolution equations and the Ricci iteration on the space of Kähler metrics, Adv. Math., 218 (2008), 1526–1565.
  • Y. A. Rubinstein, Smooth and singular Kähler–Einstein metrics, preprint, Geometric and Spectral Analysis, (eds. P. Albin et al.), Contemp. Math., 630, AMS and Centre Recherches Mathematiques, 2014.
  • Y. A. Rubinstein and S. Zelditch, The Cauchy problem for the homogeneous Monge–Ampère equation, II, Legendre transform, Adv. Math., 228 (2011), 2989–3025.
  • Y. A. Rubinstein and S. Zelditch, The Cauchy problem for the homogeneous Monge–Ampère equation, III, Lifespan, preprint, arXiv:1205.4793.
  • S. Semmes, Interpolation of spaces, differential geometry and differential equations, Rev. Mat. Iberoamericana, 4 (1988), 155–176.
  • S. Semmes, Complex Monge–Ampère and symplectic manifolds, Amer. J. Math., 114 (1992), 495–550.
  • D. Wu, Kähler–Einstein metrics of negative Ricci curvature on general quasi-projective manifolds, Comm. Anal. Geom., 16 (2008), 395–435.