Journal of the Mathematical Society of Japan

On the existence of weak solution to the coupled fluid-structure interaction problem for non-Newtonian shear-dependent fluid


Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We study the existence of weak solution for unsteady fluid-structure interaction problem for shear-thickening flow. The time dependent domain has at one part a flexible elastic wall. The evolution of fluid domain is governed by the generalized string equation with action of the fluid forces. The power-law viscosity model is applied to describe shear-dependent non-Newtonian fluids.

Article information

J. Math. Soc. Japan, Volume 68, Number 1 (2016), 193-243.

First available in Project Euclid: 25 January 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 76D03: Existence, uniqueness, and regularity theory [See also 35Q30] 74F10: Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
Secondary: 35D30: Weak solutions 76A05: Non-Newtonian fluids 35Q30: Navier-Stokes equations [See also 76D05, 76D07, 76N10]

non-Newtonian fluids fluid-structure interaction shear-thinning fluids shear-thickening fluids hemodynamics existence of weak solution


HUNDERTMARK-ZAUŠKOVÁ, Anna; LUKÁČOVÁ-MEDVIĎOVÁ, Mária; NEČASOVÁ, Šárka. On the existence of weak solution to the coupled fluid-structure interaction problem for non-Newtonian shear-dependent fluid. J. Math. Soc. Japan 68 (2016), no. 1, 193--243. doi:10.2969/jmsj/06810193.

Export citation


  • R. A. Adams, Sobolev Spaces, Amer. Math. Soc., Graduate Studies in Mathematics, 1998.
  • H. W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations, Math Z., 183 (1983), 311–341.
  • H. Brezis, Functional Analysis, Sobolev spaces and Partial Differential Equations, Springer Verlag, 2011.
  • H. Brezis, Analyse Fonctionelle-Théorie et applications, Masson, Paris, 1983.
  • H. Beirão Da Veiga, On the existence of strong solutions to a coupled fluid-structure evolution problem, J. Math. Fluid Mech., 6 (2004), 21–52.
  • D. Bucur, E. Feireisl and Š. Nečasová, Influence of wall roughness on the slip behavior of viscous fluids, Proc. R. Soc. Edinb.: Sect. A, Math., 138 (2008), 957–973.
  • D. Bucur, E. Feireisl and Š. Nečasová, On the asymptotic limit of flows past a ribbed boundary, J. Math. Fluid Mech., 10 (2008), 554–568.
  • S. Čanić and B. Muha, Existence of a weak solution to a nonlinear fluid-structure interaction problem modeling the flow of an incompressible, viscous fluid in a cylinder with deformable walls, Archives for Rational Mechanics and Analysis, 207 (2013), 919–968.
  • A. Chambolle, B. Desjardin, M. J. Esteban and C. Grandmont, Existence of weak solutions for unsteady fluid-plate interaction problem, J. Math. Fluid. Mech., 7 (2005), 368–404.
  • D. Coutand and S. Shkoller, The interaction between quasilinear elastodynamics and the Navier–Stokes equations, Arch. Rational Mech. Anal., 179 (2006), 303–352.
  • L. Diening, M. R${\mathring{\mbox{u}}}$žička and J. Wolf, Existence of weak solutions for unsteady motions of generalized Newtonian fluids, Ann. Sc. Norm. Super. Pisa Cl. Sci., 9 (2010), 1–46.
  • L. Diening, J. Málek and M. Steinhauer, On Lipschitz truncations of Sobolev functions (with variable exponent) and their selected applications, ESAIM Control Optim. Calc. Var., 14 (2008), 211–232.
  • L. C. Evans, Partial Differential Equations, Amer. Math. Soc., Graduate Studies in Math., 1998.
  • M. Feistauer, Mathematical Methods in Fluid Dynamic, John Wiley & Sons, Inc., New York, 1993.
  • J. Filo and A. Zaušková, 2D Navier–Stokes equations in a time dependent domain with Neumann type boundary conditions, J. Math. Fluid Mech., 12 (2010), 1–46.
  • J. Frehse, J. Málek and M. Steinhauer, On analysis of steady flow of fluid with shear dependent viscosity based on the Lipschitz truncation method, SIAM J. Math. Anal., 34 (2003), 1064–1083.
  • J. Frehse, J. Málek and M. Steinhauer, An existence result for fluids with shear-dependentviscosity, steady flows, Nonlinear Anal., 30 (1997), 3041–3049.
  • G. P. Galdi, An Introduction to the Theory of Navier–Stokes Equations I, Springer-Verlag, New York, 1994.
  • G. Guidoboni, M. Guidorzi and M. Padula, Continuous dependence on initial data in fluid-structure motion, J. Math. Fluid Mech., 14 (2012), 1–32.
  • M. Guidorzi, M. Padula, P. I. Plotnikov, Hopf solutions to a fluid-elastic interaction model, Math. Models Meth. Appl. Sci., 18 (2008), 215–269.
  • I. Hlaváček and J. Nečas, On inequalities of Korn's type, I, Boundary-value problems for elliptic systems of partial differential equations, Arch. Ration. Mech. An., 36 (1970), 305–311.
  • D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, 1981.
  • A. Hundertmark-Zaušková and M. Lukáčová-Medvid\!'ová, Numerical study of shear-dependent non-Newtonian fluids in compliant vessels, Comput. Math. Appl., 60 (2010), 572–590.
  • P. Kaplický, Regularity of flow of a non-Newtonian fluid in two dimensions subject to Dirichlet boundary conditions, J. Anal. Appl., 24 (2005), 467–486.
  • O. A. Ladyzenskaya, The Mathematical Theory of Viscous Incompressible Flow, Gordon and Beach, New York, 1969.
  • J. L. Lions, Quelques Méthodes de Résolution des Problémes aux Limites Non-Linéares, Dunod, Paris, 1969, (in French).
  • J. Málek, J. Nečas and M. R${\mathring{\mbox{u}}}$žička, On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains: the case $p\geq2$, Adv. Differ. Equat., 6 (2001), 257–302.
  • J. Málek, J. Nečas, M. Rokyta and M. R${\mathring{\mbox{u}}}$žička, Weak and Measure-Valued Solutions to Evolutionary PDEs, Chapman and Hall, London, 1996.
  • J. Málek and K. R. Rajagopal, Mathematical Issues Concerning the Navier–Stokes Equations and Some of its Generalizations, In: Handbook of Differential Equations, (eds. C. M. Dafermos and E. Feireisl), North-Holland Publishing Company, 2005.
  • J. Nečas, Sur les Normes \' Equivalentes dans $W_p^{(k)}(\Omega)$ et sur la Coercitivité des Formes Formellement Positives, Les Presses de l'Université de Montréal, Janvier, 1966, 102–128.
  • P. Neff, On Korn's first inequality with non-constant coefficients, Proc. Roy. Soc. Edinburgh Section A, Mathematics, 132 (2002), 221–243.
  • J. Neustupa, Existence of weak solution to the Navier–Stokes equation in a general time-varying domain by Rothe method, Math. Meth. Appl. Sci., 32 (2009), 653–683.
  • W. Pompe, Korn's first inequality with variable coefficients and its generalization, Comment. Math. Univ. Carolinae, 44 (2003), 57–70.
  • A. Quarteroni, Mathematical modelling of the cardiovascular system, In: Proceedings of the ICM, 3, Beijing, 2002, 839–850.
  • A. Quarteroni and L. Formaggia, Mathematical modelling and numerical simulations of the cardiovascular system, Handbook of Numerical Analysis, XII: Computational models for the human body, (ed. P. G. Ciarlet, guest ed. N. Ayache), Elsevier North Holand, 2004.
  • C. Surulescu, On the stationary interaction of a Navier–Stokes fluid with an elastic tube wall, Appl. Anal., 86 (2007), 149–165.
  • T. Takahashi and M. Tucsnak, Global strong solution for the two-dimensional motion of an infinite cylinder in a viscous fluid, J. Math. Fluid. Mech., 6 (2004), 53–77.
  • R. Temam, Navier–Stokes Equations, Theory and Numerical Analysis, North-Holland Publishing Company, 1979.
  • K. K. Yeleswarapu, Evaluation of Continuum Models for Characterizing the Constitutive Behavior of Blood, PhD. Thesis, University of Pittsburgh, Pittsburgh, 1996.
  • J. Wolf, Existence of weak solution to the equations of non-stationary motion of non-Newtonian fluids with shear rate dependent viscosity, J. Math. Fluid. Mech., 9 (2007), 104–138.
  • A. Zaušková, 2D Navier–Stokes Equations in a Time Dependent Domain, PhD. Thesis, Comenius University, Bratislava, 2007.