Journal of the Mathematical Society of Japan

Self-injective artin algebras without short cycles in the component quiver

Maciej KARPICZ

Full-text: Open access

Abstract

We give a complete description of all self-injective artin algebras of infinite representation type whose component quiver has no short cycles.

Article information

Source
J. Math. Soc. Japan, Volume 68, Number 1 (2016), 51-69.

Dates
First available in Project Euclid: 25 January 2016

Permanent link to this document
https://projecteuclid.org/euclid.jmsj/1453731534

Digital Object Identifier
doi:10.2969/jmsj/06810051

Mathematical Reviews number (MathSciNet)
MR3454552

Zentralblatt MATH identifier
1346.16007

Subjects
Primary: 16D50: Injective modules, self-injective rings [See also 16L60]
Secondary: 16G10: Representations of Artinian rings 16G70: Auslander-Reiten sequences (almost split sequences) and Auslander- Reiten quivers

Keywords
self-injective artin algebra orbit algebra quasitilted algebra quasi-tube short cycle component quiver

Citation

KARPICZ, Maciej. Self-injective artin algebras without short cycles in the component quiver. J. Math. Soc. Japan 68 (2016), no. 1, 51--69. doi:10.2969/jmsj/06810051. https://projecteuclid.org/euclid.jmsj/1453731534


Export citation

References

  • I. Assem, J. Nehring and A. Skowroński, Domestic trivial extensions of simply connected algebras, Tsukuba J. Math., 13 (1989), 31–72.
  • I. Assem and A. Skowroński, Iterated tilted algebras of type $\tilde{\mathbb A}_n$, Math. Z., 195 (1987), 269–290.
  • V. Dlab and C. M. Ringel, Indecomposable representations of graphs and algebras, Mem. Amer. Math. Soc., 6 (1976), no.,173.
  • P. Dowbor and A. Skowroński, Galois coverings of representation-infinite algebras, Comment. Math. Helv., 62 (1987), 311–337.
  • P. Gabriel, The universal cover of a representation-finite algebra, Representations of Algebras, Lecture Notes in Math., 903, Springer-Verlag, Berlin-Heidelberg, 1981, 68–105.
  • W. Geigle and H. Lenzing, A class of weighted projective curves arising in representation theory of finite dimensional algebras, Singularities, Representation of Algebras and Vector Bundles, Lecture Notes in Math., 1273, Springer-Verlag, Berlin-Heidelberg, 1987, 265–297.
  • D. Happel and C. M. Ringel, The derived category of a tubular algebra, Representation Theory I, Finite Dimensional Algebras, Lecture Notes in Math., 1177, Springer-Verlag, Berlin-Heidelberg, 1986, 156–180.
  • D. Happel and D. Vossieck, Minimal algebras of infinite representation type with preprojective component, Manuscr. Math., 42 (1983), 221–243.
  • A. Jaworska, P. Malicki and A. Skowroński, On Auslander–Reiten components of algebras without external short paths, J. London Math. Soc., 85 (2012), 245–268.
  • M. Karpicz, On selfinjective algebras without short cycles in the component quiver, Colloq. Math., 123 (2011), 219–232.
  • M. Karpicz, A. Skowroński and K. Yamagata, On selfinjective artin algebras having generalized standard quasitubes, J. Pure Appl. Algebra, 215 (2011), 2738–2760.
  • H. Lenzing and J. A. de la Peña, Concealed-canonical algebras and separating tubular families, Proc. Lond. Math. Soc., 78 (1999), 513–540.
  • H. Lenzing and A. Skowroński, Quasi-tilted algebras of canonical type, Colloq. Math., 71 (1996), 161–181.
  • P. Malicki and A. Skowroński, Algebras with separating almost cyclic coherent Auslander–Reiten components, J. Algebra, 291 (2005), 208–237.
  • J. Nehring and A. Skowroński, Polynomial growth trivial extensions of simply connected algebras, Fund. Math., 132 (1989), 117–134.
  • I. Reiten and A. Skowroński, Sincere stable tubes, J. Algebra, 232 (2000), 64–75.
  • I. Reiten, A. Skowroński and S. O. Smalø, Short chains and short cycles of modules, Proc. Amer. Math. Soc., 117 (1993), 343–354.
  • C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math., 1099, Springer-Verlag, Berlin-Heidelberg, 1984.
  • C. M. Ringel, The canonical algebras, with an appendix by W. Crawley-Boevey, Topics in Algebra. Part 1: Rings and Representations of Algebras, Banach Center Publications, 26, PWN, Warsaw, 1990, 407–432.
  • D. Simson and A. Skowroński, Elements of the Representation Theory of Associative Algebras 2: Tubes and Concealed Algebras of Euclidean Type, London Mathematical Society Student Texts, 71, Cambridge University Press, Cambridge, 2007.
  • D. Simson and A. Skowroński, Elements of the Representation Theory of Associative Algebras 3: Representation-Infinite Tilted Algebras, London Mathematical Society Student Texts, 72, Cambridge University Press, Cambridge, 2007.
  • A. Skowroński, Selfinjective algebras of polynomial growth, Math. Ann., 285 (1989), 177–199.
  • A. Skowroński, Cycles in module categories, Finite Dimensional Algebras and Related Topics, NATO ASI Series, Series C: Math. and Phys. Sciences, 424, Kluwer Acad. Pub., Dordrecht, 1994, 309–345.
  • A. Skowroński, Generalized standard Auslander–Reiten components, J. Math. Soc. Japan, 46 (1994), 517–543.
  • A. Skowroński, Minimal representation-infinite artin algebras, Math. Proc. Cambridge Phil. Soc., 116 (1994), 229–243.
  • A. Skowroński, On the composition factors of periodic modules, J. London Math. Soc., 49 (1994), 477–492.
  • A. Skowroński, A construction of complex syzygy periodic modules over symmetric algebras, Colloq. Math., 103 (2005), 61–69.
  • A. Skowroński and K. Yamagata, Galois coverings of selfinjective algebras by repetitive algebras, Trans. Amer. Math. Soc., 351 (1999), 715–734.
  • A. Skowroński and K. Yamagata, On selfinjective artin algebras having nonperiodic generalized standard Auslander–Reiten components, Colloq. Math., 96 (2003), 235–244.
  • A. Skowroński and K. Yamagata, Positive Galois coverings of selfinjective algebras, Adv. Math., 194 (2005), 398–436.
  • A. Skowroński and K. Yamagata, Frobenius Algebras I: Basic Representation Theory, EMS Textbooks in Mathematics, European Mathematical Society, 2011.