Journal of the Mathematical Society of Japan

Classification of the fundamental groups of join-type curves of degree seven

Christophe EYRAL and Mutsuo OKA

Full-text: Open access

Abstract

We compute the fundamental groups $\pi_1(\mathbb{P}^2\setminus C)$ for all complex curves $C$ of degree $7$ defined by an equation of the form

$$\prod_{j=1}^\ell (Y-\beta_j Z)^{\nu_j} = c\cdot\prod_{i=1}^m (X-\alpha_i Z)^{\lambda_i},$$

where $\sum_{j=1}^\ell \nu_j=\sum_{i=1}^m \lambda_i$ is the degree of the curve, $c\in\mathbb{R}\setminus \{0\}$, and $\beta_1,\ldots,\beta_\ell$ (respectively $\alpha_1,\ldots,\alpha_m$) mutually distinct real numbers.

Article information

Source
J. Math. Soc. Japan, Volume 67, Number 2 (2015), 663-698.

Dates
First available in Project Euclid: 21 April 2015

Permanent link to this document
https://projecteuclid.org/euclid.jmsj/1429624599

Digital Object Identifier
doi:10.2969/jmsj/06720663

Mathematical Reviews number (MathSciNet)
MR3340191

Zentralblatt MATH identifier
1328.14051

Subjects
Primary: 14H30: Coverings, fundamental group [See also 14E20, 14F35]
Secondary: 14H20: Singularities, local rings [See also 13Hxx, 14B05] 14H45: Special curves and curves of low genus 14H50: Plane and space curves

Keywords
plane curves fundamental group Zariski–van Kampen pencil method monodromy

Citation

EYRAL, Christophe; OKA, Mutsuo. Classification of the fundamental groups of join-type curves of degree seven. J. Math. Soc. Japan 67 (2015), no. 2, 663--698. doi:10.2969/jmsj/06720663. https://projecteuclid.org/euclid.jmsj/1429624599


Export citation

References

  • Pi. Cassou-Noguès, C. Eyral and M. Oka, Topology of septics with the set of singularities $\bm{B}_{4,4} \oplus 2\bm{A}_3 \oplus 5\bm{A}_1$ and $\pi_1$-equivalent weak Zariski pairs, Topology Appl., 159 (2012), 2592–2608.
  • A. Degtyarev, Topology of plane algebraic curves: the algebraic approach, In: Topology of Algebraic Varieties and Singularities, Jaca, 2009, (eds. J. I. Cogolludo-Agustín and E. Hironaka), Contemp. Math., 538, Amer. Math. Soc., Providence, RI, 2011, pp.,137–161.
  • P. Deligne, Le groupe fondamental du complément d'une courbe plane n'ayant que des points doubles ordinaires est abélien (d'après W. Fulton), Séminaire Bourbaki, 1979–80, Lecture Notes in Math., 842, Springer-Verlag, Berlin, New York, 1981, pp.,1–10.
  • C. Eyral and M. Oka, Fundamental groups of join-type sextics via dessins d'enfants, Proc. Lond. Math. Soc. (3), 107 (2013), 76–120.
  • W. Fulton, On the fundamental group of the complement of a node curve, Ann. of Math. (2), 111 (1980), 407–409.
  • E. R. van Kampen, On the fundamental group of an algebraic curve, Amer. J. Math., 55 (1933), 255–260.
  • A. Libgober, Fundamental groups of the complements to plane singular curves, In: Algebraic Geometry, Bowdoin, 1985, (ed. Spencer J. Bloch), Proc. Sympos. Pure Math., 46, Amer. Math. Soc., Providence, RI, 1987, pp.,29–45.
  • M. V. Nori, Zariski's conjecture and related problems, Ann. Sci. École Norm. Sup. (4), 16 (1983), 305–344.
  • M. Oka, On the fundamental group of the complement of certain plane curves, J. Math. Soc. Japan, 30 (1978), 579–597.
  • M. Oka, A survey on Alexander polynomials of plane curves, Sémin. Congr., 10 (2005), 209–232.
  • M. Oka, Symmetric plane curves with nodes and cusps, J. Math. Soc. Japan, 44 (1992), 375–414.
  • J.-P. Serre, Revêtements ramifiés du plan projectif (d'après S. Abhyankar), Séminaire Bourbaki, 1959–60, In: Exposés de séminaires (1950–1999), Doc. Math. (Paris), 1, Soc. Math. France, Paris, 2008, pp.,179–185.
  • R. Thom, L'équivalence d'une fonction différentiable et d'un polynôme, Topology, 3 (1965), 297–307.
  • O. Zariski, On the problem of existence of algebraic functions of two variables possessing a given branch curve, Amer. J. Math., 51 (1929), 305–328.
  • O. Zariski, A theorem on the Poincaré group of an algebraic hypersurface, Ann. of Math. (2), 38 (1937), 131–141.
  • O. Zariski, Algebraic Surfaces, with appendices by S. S. Abhyankar, J. Lipman and D. Mumford, preface to the appendices by D. Mumford, reprint of the second 1971 edition, Classics Math., Springer-Verlag, Berlin, 1995.